Skip to main content
Log in

Long-range surface-plasmon-enhanced all-optical switching and beam steering through nonlinear Kerr effect

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A proposition toward all-optical tuning of long-range surface-plasmon-enhanced beam shifts and all-optical switching is implemented analytically by exploitation of Kerr effect induced refractive index change through varying pump light intensity in a multilayer long-range surface-plasmon configuration at 1550 nm. Through the optimized design comprising polydiacetylene para-toulene sulfonate as a Kerr polymer, a high-contrast all-optical switch with a pump intensity threshold of 0.15 GW/cm2 is proposed. The design also provides giant spatial and angular Goos–Hänchen and Imbert–Fedorov shifts at mm and µrad ranges along with wide range of tunability of beam shifts with the varying pump light intensity and the varying incident angle. Moreover, exact beam position and beam steering considering the conjoint effect of spatial and angular Goos–Hänchen and Imbert–Fedorov shifts for different incident polarizations are also obtained. This idea proffers a new possibility for pulse generation, optical sensors applications, optical modulation, geodetic surveying, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Aiello, J.P. Woerdman, Opt. Lett. 36, 543–545 (2011)

    Article  ADS  Google Scholar 

  2. F. Pillon, H. Gilles, S. Girard, Appl. Opt. 43, 1863 (2004)

    Article  ADS  Google Scholar 

  3. F.I. Fedorov, J. Opt. 15, 014002 (2013)

    Article  ADS  Google Scholar 

  4. C. Imbert, Phys. Rev. D 5, 787–796 (1972)

    Article  ADS  Google Scholar 

  5. D.H. Foster, A.K. Cook, J.U. Nöckel, Opt. Lett. 32, 1764–1766 (2007)

    Article  ADS  Google Scholar 

  6. J. Wiersig, M. Hentschel, Phys. Rev. E 78, 016201 (2008)

    Article  ADS  Google Scholar 

  7. X. Yin, L. Hesselink, Appl. Phys. Lett. 89, 261108 (2006)

    Article  ADS  Google Scholar 

  8. L. Salasnich, Phys. Rev. A 86, 055801 (2012)

    Article  ADS  Google Scholar 

  9. M.A. Porras, Opt. Commun. 131, 77–83 (1996)

    Article  Google Scholar 

  10. A. Aiello, New J. Phys. 14, 013058 (2012)

    Article  ADS  Google Scholar 

  11. J. Fan, A. Dogariu, L.J. Wang, Opt. Express 11, 299–308 (2003)

    Article  ADS  Google Scholar 

  12. Y. Yan, X. Chen, C.F. Li, Phys. Lett. A 361, 178–181 (2007)

    Article  ADS  Google Scholar 

  13. P.R. Berman, Phys. Rev. E 66, 067603 (2002)

    Article  ADS  Google Scholar 

  14. L.G. Wang, S.Y. Zhu, J. Appl. Phys. 98, 043522 (2005)

    Article  ADS  Google Scholar 

  15. F. Wang, A. Lakhtakia, Opt. Commun. 235, 107 (2004)

    Article  ADS  Google Scholar 

  16. H.M. Lai, S.W. Chan, Opt. Lett. 27, 680–682 (2002)

    Article  ADS  Google Scholar 

  17. M. Merano, A. Aiello, G.W. tHooft, M.P. van Exter, E.R. Eliel, J.P. Woerdman, Opt. Express 15, 15928–15934 (2007)

    Article  ADS  Google Scholar 

  18. K.Y. Bliokh, Y.P. Bliokh, Phys. Rev. Lett. 96, 073903 (2006)

    Article  ADS  Google Scholar 

  19. W. Nasalski, Phys. Rev. E 74, 056613 (2006)

    Article  ADS  Google Scholar 

  20. K.Y. Bliokh, I.V. Shadrivov, Y.S. Kivshar, Opt. Lett. 34, 389–391 (2009)

    Article  ADS  Google Scholar 

  21. F. Töppel, M. Ornigotti, A. Aiello, New J. Phys. 15, 113059 (2013)

    Article  Google Scholar 

  22. G.G. Nenningera, P. Tobiška, J. Homola, S.S. Yee, Sens. Actuators B: Chem. 74, 145–151 (2001)

    Article  Google Scholar 

  23. S. Zeng, D. Baillargeat, H.-P. Ho, K.-T. Yong, Chem. Soc. Rev. 43, 3426–3452 (2014)

    Article  Google Scholar 

  24. A.W. Wark, H.J. Lee, R.M. Corn, Anal. Chem. 77, 3904–3907 (2005)

    Article  Google Scholar 

  25. P. Berini, Adv. Opt. Photon. 1, 484–588 (2009)

    Article  Google Scholar 

  26. T. Okamoto, T. Kamiyama, I. Yamaguchi, Opt. Lett. 18, 1570–1572 (1993)

    Article  ADS  Google Scholar 

  27. J. Chen, P. Wang, X. Wang, J. Hu, C. Chen, Y. Lu, H. Ming, Q. Zhan, Opt. Commun. 283, 151–154 (2010)

    Article  ADS  Google Scholar 

  28. X.Y. Hu, P. Jiang, C. Xin, H. Yang, Q.H. Gong, Appl. Phys. Lett. 94, 031103 (2009)

    Article  ADS  Google Scholar 

  29. K.S. Lee, T.S. Lee, W.M. Kim, S. Cho, S. Lee, Appl. Phys. Lett. 91, 141905 (2007)

    Article  ADS  Google Scholar 

  30. G. Margheri, T. Del Rosso, S. Sottini, S. Trigari, E. Giorgetti, Opt. Express 16, 9869–9883 (2008)

    Article  ADS  Google Scholar 

  31. G.A. Wurtz, A.V. Zayats, Laser Photon. Rev. 2, 125–135 (2008)

    Article  Google Scholar 

  32. A. Husakou, J. Herrmann, Phys. Rev. Lett. 99, 127402 (2007)

    Article  ADS  Google Scholar 

  33. G. Margheri, T. Del Rosso, S. Sottini, S. Trigari, E. Giorgetti, Opt. Express 16, 9869–9883 (2008)

    Article  ADS  Google Scholar 

  34. K. Sasaki, T. Nagamuraa, J. Appl. Phys. 83, 2894 (1998)

    Article  ADS  Google Scholar 

  35. A.K. Bhowmik, M. Thakur, Opt. Lett. 26, 902–904 (2001)

    Article  ADS  Google Scholar 

  36. L. Jiang, Q. Wang, Y. Xiang, X. Dai, S. Wen, IEEE Photon. J. 5, 6500108 (2013)

    Article  Google Scholar 

  37. B. Zhao, L. Gao, Opt. Express 17, 21433–21441 (2009)

    Article  ADS  Google Scholar 

  38. M. Cheng, F. Ping, X. Chen, X. Zeng, S. Feng, R. Chen, J. Opt. Soc. Am. B 31, 2325 (2014)

    Article  ADS  Google Scholar 

  39. M. Ukita, H. Okuyama, M. Ozawa, A. Ishibashi, K. Akimoto, Y. Mori, Appl. Phys. Lett. 63, 2082–2084 (1993)

    Article  ADS  Google Scholar 

  40. M. Balakrishnan, E.J. Klein, M.B.J. Diemeer, A. Driessen, M. Faccini, W. Verboom, D.N. Reinhoudt, A. Leinse, LEOS Benelux 2006 Annual Symposium, (2006), pp. 73–76

  41. A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, A. Sentenac, Opt. Lett. 32, 2269 (2007)

    Article  ADS  Google Scholar 

  42. P. Winsemius, F.F. van Kampen, H.P. Lengkeek, C.G. van Went, J. Phys. F: Met. Phys. 6, 1583–1606 (1976)

    Article  ADS  Google Scholar 

  43. P. Berini, Adv. Opt. Photon. 1, 484–588 (2009)

    Article  Google Scholar 

  44. S. Crosbiea, D. Zerulla, J. Appl. Phys. 111, 084702 (2012)

    Article  ADS  Google Scholar 

  45. G. Sui, L. Cheng, L. Chen, Opt. Commun. 284, 1553–1556 (2011)

    Article  ADS  Google Scholar 

  46. S. Goswami, M. Pal, A. Nandi, P.K. Panigrahi, N. Ghosh, Opt. Lett. 39, 6229–6232 (2014)

    Article  ADS  Google Scholar 

  47. A. Yariv, P. Yeh, Photonics (Oxford University Press, New York, 2006)

    Google Scholar 

  48. C. Bree, A. Demircan, G. Steinmeyer, Phys. Rev. Lett. 106, 83902 (2011)

    Article  ADS  Google Scholar 

  49. K. Sasagawa, M. Tsuchiya, Appl. Phys. Express 2, 122401 (2009)

    Article  ADS  Google Scholar 

  50. P. Berini, I. De Leon, Nat. Photon. 6, 16–24 (2012)

    Article  ADS  Google Scholar 

  51. X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, Appl. Phys. Lett. 85, 372 (2004)

    Article  ADS  Google Scholar 

  52. S. Grosche, M. Ornigotti, A. Szameit, Opt. Express 23, 30196 (2015)

    Article  Google Scholar 

  53. M. Merano, A. Aiello, M.P. van Exter, J.P. Woerdman, Nat. Photon. 3, 337–340 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardhendu Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, A., Goswami, N. & Saha, A. Long-range surface-plasmon-enhanced all-optical switching and beam steering through nonlinear Kerr effect. Appl. Phys. B 123, 1 (2017). https://doi.org/10.1007/s00340-016-6591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6591-9

Keywords

Navigation