Skip to main content
Log in

Location-Dependent Local Field Enhancement Along the Surface of the Metal–Dielectric Core–Shell Nanostructure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A theoretical study based on quasi-static approximation is performed to investigate the location-dependent local field enhancement around the dielectric shell-coated gold nanosphere. Our calculation results show that the local field distribution near a gold nanoparticle can be altered greatly by coating with a dielectric shell. Because of the polarizability of the dielectric shell, increasing azimuth angle along the inner surface leads to the increase of the local field, which is opposite to that of the outer surface. Furthermore, the location-dependent local field enhancement and resonance frequency at both the inner and outer surfaces can also be modulated by varying the shell thickness and shell dielectric constant. These calculation results about the location-dependent local field enhancement show the potential of dielectric-coated metallic nanostructure for single-molecule detection based on surface-enhanced Raman scattering and surface enhanced fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Pena O, Pal U, Rodriguez-Fernandez L, Silva-Pereyra HG, Rodriguez-Iglesias V, Cheang-Wong JC, Arenas-Alatorre J, Oliver A (2009) Formation of Au–Ag core–shell nanostructures in silica matrix by sequential ion implantation. J Phys Chem C 113:2296–2300

    Article  CAS  Google Scholar 

  2. Wu C, Xu QH (2009) Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 25:9441–9446

    Article  CAS  Google Scholar 

  3. Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R (2009) Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonic 3:287–291

    Article  CAS  Google Scholar 

  4. Li M, Zhang ZS, Zhang X, Li KY, Yu XF (2008) Optical properties of Au/Ag core/shell nanoshuttles, Opt. Express 16:14288–14293

    Article  CAS  Google Scholar 

  5. Hu WQ, Liang EJ, Ding P, Cai GW, Xue QZ (2009) Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial. Opt Express 17:21843–21849

    Article  CAS  Google Scholar 

  6. Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5:119–124

    Article  CAS  Google Scholar 

  7. Hudson SD, Chumanov G (2008) Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles. J Phys Chem C 112:19866–19871

    Article  CAS  Google Scholar 

  8. Zhu J (2005) Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles. Mater Lett 59:1413–1416

    Article  CAS  Google Scholar 

  9. Gao L, Gu LP, Li ZY (2003) Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles. Phys Rev E 68:066601

    Article  Google Scholar 

  10. Wang QQ, Han JB, Guo DL, Xiao S, Han YB, Gong HM, Zou XW (2007) Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region. Nano Lett 7:723–728

    Article  CAS  Google Scholar 

  11. Gao L, Yu XP (2007) Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy. Eur Phys J B 55:403–409

    Article  CAS  Google Scholar 

  12. Pincon N, Palpant B, Prot D, Charron E, Debrus S (2002) Third-order nonlinear optical response of Au:SiO2 thin films: influence of gold nanoparticle concentration and morphologic parameters. Eur Phys J D 19:395–402

    Article  CAS  Google Scholar 

  13. Baffou G, Quidant R, Girard C (2009) Heat generation in plasmonic nanostructures: influence of morphology. Appl Phys Lett 94:153109

    Article  Google Scholar 

  14. Sannomiya T, Hafner C, Vörös J (2009) Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing. J Biomed Opt 14:064027

    Article  Google Scholar 

  15. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  16. Schelm S, Smith GB (2005) Internal electric field densities of metal nanoshells. J Phys Chem B 109:1689–1694

    Article  CAS  Google Scholar 

  17. Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett 7:2101–2107

    Article  CAS  Google Scholar 

  18. Xu HX (2003) A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres. Phys Lett A 312:411–419

    Article  CAS  Google Scholar 

  19. Wu LY, Ross BM, Lee LP (2009) Optical properties of the crescent-shaped nanohole antenna. Nano Lett 9:1956–1961

    Article  CAS  Google Scholar 

  20. Yamaguchi K, Inoue T, Fujii M, Ogawa T, Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M (2008) Characteristics of light intensity enhancement of a silver nanoprism with rounded corners. J Micros 229:545–550

    Article  CAS  Google Scholar 

  21. Höflich K, Gösele U, Christiansen S (2009) Near-field investigations of nanoshell cylinder dimmers. J Chem Phys 131:164704

    Article  Google Scholar 

  22. Brandl DW, Mirin NA, Nordlander P (2006) Plasmon modes of nanosphere trimers and quadrumers. J Phys Chem B 110:12302–12310

    Article  CAS  Google Scholar 

  23. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  24. Cao M, Wang M, Gu N (2009) Calculated optical properties of dielectric shell coated gold nanorods. Chin Phys Lett 26:045201

    Article  Google Scholar 

  25. Kometani N, Tsubonishi M, Fujita T, Asami K, Yonezawa Y (2001) Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies. Langmuir 17:578–580

    Article  CAS  Google Scholar 

  26. Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Varma S (2008) Synthesis of gold–silicon core–shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92:103105

    Article  Google Scholar 

  27. Zhu J (2007) Spatial dependence of the local field enhancement in dielectric shell coated silver nanospheres. Appl Surf Sci 253:8729–8733

    Article  CAS  Google Scholar 

  28. Zhu J (2007) Polarization direction characters of local electric field around dielectric coated gold nanowire. Appl Phys A 88:673–677

    Article  CAS  Google Scholar 

  29. Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser & Photon Rev 2:136–159

    Article  CAS  Google Scholar 

  30. Zhu J (2007) Theoretical study of the tunable second-harmonic generation (SHG) enhancement factor of gold nanotubes. Nanotechnology 18:225702

    Article  Google Scholar 

  31. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824–1832

    Article  CAS  Google Scholar 

  32. Ambati M, Genov DA, Oulton RF, Zhang X (2008) Active plasmonics: surface plasmon interaction with optical emitters. IEEE J Sel Top Quant 14:1395–1403

    Article  CAS  Google Scholar 

  33. Robinson JT, Manolatou C, Chen L, Lipson M, Mode U (2005) Ultrasmall volumes in dielectric optical microcavities. Phys Rev Lett 95:143901

    Article  Google Scholar 

  34. Sanchis L, Cryan MJ, Pozo J, Craddock IJ, Rarity JG (2007) Ultrahigh Purcell factor in photonic crystal slab microcavities. Phys Rev B 76:045118

    Article  Google Scholar 

  35. Akahane Y, Asanol T, Song BS, Noda S (2005) Fine-tuned high-Q photonic-crystal nanocavity. Opt Express 13:1202–1214

    Article  Google Scholar 

  36. Barth M, Schietinger S, Fischer S, Becker J, Nüsse N, Aichele T, Löchel B, Sönnichsen C, Benson O (2010) Nanoassembled plasmonic–photonic hybrid cavity for tailored light-matter coupling. Nano Lett 10:891–895

    Article  CAS  Google Scholar 

  37. Li ZY, Xia YN (2010) Metal Nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett 10:243–249

    Article  CAS  Google Scholar 

  38. Pieczonka NPW, Moula G, Aroca RF (2009) SERRS for single-molecule detection of dye-labeled phospholipids in Langmuir–Blodgett monolayers. Langmuir 25:11261–11264

    Article  CAS  Google Scholar 

  39. Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15:14266–14274

    Article  CAS  Google Scholar 

  40. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  41. York J, Spetzler D, Xiong F, Frasch WD (2008) Single-molecule detection of DNA via sequence-specific links between F1-ATPase motors and gold nanorod sensors. Lab Chip 8:415–419

    Article  CAS  Google Scholar 

  42. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant no. 10804091 and the National High-tech Research and Development Program (863 Program) of China under grant No. 2009AA04Z314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Jian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jian, Z., Jun-wu, Z. & Jian-jun, L. Location-Dependent Local Field Enhancement Along the Surface of the Metal–Dielectric Core–Shell Nanostructure. Plasmonics 5, 311–318 (2010). https://doi.org/10.1007/s11468-010-9142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9142-y

Keywords

PACS

Navigation