Skip to main content
Log in

Polarization direction characters of local electric field around dielectric coated gold nanowire

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The local electric field components in the dielectric wall with a long gold nanowire in its core are calculated based on quasi-static theory. The calculated results show that the complete polarized incident light does not only stimulate same directional complete polarized local electric field. The same directional polarized electric field only locates close to the poles of the core wire and is parallel or perpendicular to the polarized direction of the incident radiation. On the other hand, incident light also stimulates perpendicular directional polarization, which densely locates close to the poles of the core wire in the direction with an included angle π/4 or 3π/4 makes with polarization direction of incident light. Furthermore, local electric field components in the wall also depend on the dielectric constant of dielectric wall and surrounding medium. When dielectric constant of the wall is less than that of surrounding, the areas of perpendicular directional polarized local field in the wall reduce and shift greatly. At the same time, more parallel directional polarized local field focus in the poles of the wall along the incident polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983)

    Google Scholar 

  2. S.A. Maier, M.L. Brongersma, P.G. Kik, H.A. Atwater, Phys. Rev. B 65, 193408 (2002)

    Article  ADS  Google Scholar 

  3. M. Kaempfe, G. Seifert, K.J. Berg, H. Hofmeister, H. Graener, Eur. Phys. J. D 16, 237 (2001)

    Article  ADS  Google Scholar 

  4. S.H. Brewer, S.J. Anthireya, S.E. Lappi, D.L. Drapcho, S. Franzen, Langmuir 18, 4460 (2002)

    Article  Google Scholar 

  5. Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, Adv. Mater. 11, 223 (1999)

    Article  Google Scholar 

  6. K. Aslan, J.R. Lakowicz, C.D. Geddesa, Appl. Phys. Lett. 87, 234108 (2005)

    Article  Google Scholar 

  7. M. Sukharev, T. Seideman, Nano Lett. 6, 715 (2006)

    Article  Google Scholar 

  8. N.A.F. Al-Rawashdeh, M.L. Sandrock, C.J. Seugling, C.A. Foss, J. Phys. Chem. B 102, 361 (1998)

    Article  Google Scholar 

  9. B.K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, M. Kauranen, J. Opt. A 7, S110 (2005)

    Google Scholar 

  10. B.K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Appl. Phys. Lett. 86, 183109 (2005)

    Article  ADS  Google Scholar 

  11. J. Nappa, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, J. Chem. Phys. 125, 184712 (2006)

    Article  ADS  Google Scholar 

  12. K.P. Unnikrishnan, V.P.N. Nampoori, V. Ramakrishnan, M. Umadevi, C.P.G. Vallabhan, J. Phys. D 36, 1242 (2003)

    Article  ADS  Google Scholar 

  13. G.T. Boyd, T. Rasing, J.R.R. Leite, Y.R. Shen, Phys. Rev. B 30, 519 (1984)

    Article  ADS  Google Scholar 

  14. D. Prot, D.B. Stout, J. Lafait, N. Pincon, B. Palpant, S. Debrus, J. Opt. A 4, S99 (2002)

    Google Scholar 

  15. E. Hao, G.C. Schatz, J.T. Huppl, J. Fluoresc. 14, 331 (2004)

    Google Scholar 

  16. J.W. Hausa, H.S. Zhou, S. Takami, M. Hirasawa, I. Honma, H. Komiyama, J. Appl. Phys. 73, 1043 (1993)

    Article  ADS  Google Scholar 

  17. S. Schelm, G.B. Smith, J. Phys. Chem. B 109, 1689 (2005)

    Article  Google Scholar 

  18. T. Grosges, A. Vial, D. Barchiesi, Opt. Express 13, 8483 (2005)

    Article  ADS  Google Scholar 

  19. G. Leveque, O.J.F. Martin, Opt. Express 14, 9971 (2006)

    Article  ADS  Google Scholar 

  20. Y. Wu, P. Nordlander, J. Chem. Phys. 125, 124708 (2006)

    Article  ADS  Google Scholar 

  21. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, F.J.G. Abajo, J. Phys. Chem. C 111, 1207 (2007)

    Google Scholar 

  22. D.W. Brandl, N.A. Mirin, P. Nordlander, J. Phys. Chem. B 110, 12302 (2006)

    Article  Google Scholar 

  23. H.X. Xu, Phys. Lett. A 312, 411 (2003)

    Article  ADS  Google Scholar 

  24. H.X. Xu, M. Kall, Phys. Rev. Lett. 89, 246802 (2002)

    Article  ADS  Google Scholar 

  25. M.A. Suarez, T. Grosjean, D. Charraut, D. Courjon, Opt. Commun. 270, 447 (2007)

    Article  ADS  Google Scholar 

  26. A.V. Goncharenko, H.C. Changa, J.K. Wang, Ultramicroscopy 107, 151 (2007)

    Article  Google Scholar 

  27. J.A.A.J. Perenboom, P. Wyder, F. Meier, Phys. Rep. 78, 173 (1981)

    Article  ADS  Google Scholar 

  28. D. Canchal-Arias, P. Dawson, Surf. Sci. 577, 95 (2005)

    Article  ADS  Google Scholar 

  29. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  30. E. Prodan, A. Lee, P. Nordlander, Chem. Phys. Lett. 360, 325 (2002)

    Article  Google Scholar 

  31. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995)

    Google Scholar 

  32. J. Zhu, Mater. Sci. Eng. A 454455, 685 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhu.

Additional information

PACS

78.67.Bf; 73.20.Mf; 36.40.Gk; 78.66.Bz; 73.20.Mf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J. Polarization direction characters of local electric field around dielectric coated gold nanowire. Appl. Phys. A 88, 673–677 (2007). https://doi.org/10.1007/s00339-007-4026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4026-5

Keywords

Navigation