Skip to main content
Log in

A Review of an Ultrafast and Sensitive Bioassay Platform Technology: Microwave-accelerated Metal-enhanced Fluorescence

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Since the publication of our first paper on the microwave-accelerated metal-enhanced fluorescence (MAMEF) bioassay platform technology in 2005 (Aslan and Geddes, Anal Chem 77:8057–8067, 2005), we have been repeatedly asked to comment on the advantages of “microwave heating” with plasmonic nanostructures over conventional heating for bioassays by many of our colleagues in the community. We note that one can find a couple of review articles, one by Mingos (Gabriel et al., Chem Soc Rev 27:213–223, 1998) and another by Thostenson and Chou (Manufacturing 30:1055–1071, 1999), summarizing the fundamentals and several applications of microwave processing of chemical compounds and composite materials, respectively. These review articles also present a direct comparison of microwave heating with conventional heating with respect to the processing of materials and microwave-assisted synthesis of chemical compounds. In this review article, we seek to remind the reader of the fundamentals of microwave heating and the interactions of microwaves with chemical and biological materials relevant to our recent work on bioassays, rather than repeating the information provided in the above-mentioned very informative reviews. We also summarize our work on MAMEF-based bioassays where we use plasmonic nanostructures to additionally plasmon-enhance fluorescence signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal Chem 77(24):8057–8067 doi:10.1021/ac0516077

    Article  CAS  Google Scholar 

  2. Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27(3):213–223 doi:10.1039/a827213z

    Article  CAS  Google Scholar 

  3. Thostenson ET, Chou TW (1999) Microwave processing: fundamentals and applications. Compos Part A Appl Sci Manuf 30(9):1055–1071

    Article  Google Scholar 

  4. Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A et al (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6(1):110–115 doi:10.1021/nl0516862

    Article  CAS  Google Scholar 

  5. Aslan K, Geddes CD (2007) Microwave-accelerated ultrafast nanoparticle aggregation assays using gold colloids. Anal Chem 79(5):2131–2136 doi:10.1021/ac0620967

    Article  CAS  Google Scholar 

  6. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62 doi:10.1016/j.copbio.2005.01.001

    Article  CAS  Google Scholar 

  7. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129 doi:10.1023/A:1016875709579

    Article  Google Scholar 

  8. Aslan K, Lakowicz JR, Szmacinski H, Geddes CD (2005) Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: metal-enhanced fluorescence sensing. J Fluoresc 15(1):37–40 doi:10.1007/s10895-005-0211-0

    Article  CAS  Google Scholar 

  9. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J Fluoresc 15(5):643–654 doi:10.1007/s10895-005-2970-z

    Article  CAS  Google Scholar 

  10. Zhang Y, Aslan K, Previte MJ, Geddes CD (2007) Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophores structured emission. Appl Phys Lett 90:053107

    Article  CAS  Google Scholar 

  11. Baluschev S, Yu F, Miteva T, Ahl S, Yasuda A, Nelles G et al (2005) Metal-enhanced up-conversion fluorescence: effective triplet–triplet annihilation near silver surface. Nano Lett 5(12):2482–2484 doi:10.1021/nl0517969

    Article  CAS  Google Scholar 

  12. Mackowski S, Wormke S, Maier AJ, Brotosudarmo TH, Harutyunyan H, Hartschuh A et al (2008) Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano Lett 8(2):558–564 doi:10.1021/nl072854o

    Article  CAS  Google Scholar 

  13. Garoff S, Weitz DA, Hanson CD, Gramila TJ, Gersten JI (1981) Deexcitation channels excited Mol. Silver I. Films. J Opt Soc Am 71(12):1552–1552

    Google Scholar 

  14. Weitz DA, Garoff S, Hanson CD (1981) Effect rough silver surfaces fluorescent lifetimes Bull. Am Phys Soc 26(3):339–339

    Google Scholar 

  15. Knoll W, Philpott MR, Swalen JD (1981) Emission light Ag Met. Gratings coat. Dye monolayer assemblies. J Chem Phys 75(10):4795–4799

    Article  CAS  Google Scholar 

  16. Weber WH, Eagen CF (1979) Energy-transfer excited dye molecule surface-plasmons adjacent Met. Opt Lett 4(8):236–238

    Article  CAS  Google Scholar 

  17. Zhang Y, Aslan K, Previte MJR, Geddes CD (2007) Metal-enhanced fluorescence from copper substrates. Appl Phys Lett 90:173116

    Article  CAS  Google Scholar 

  18. Previte MJ, Zhang Y, Aslan K, Geddes CD (2007) Real-time thermal imaging of microwave accelerated metal-enhanced fluorescence (MAMEF) based assays on sapphire plates. J Fluoresc 17(6):639–642

    Article  CAS  Google Scholar 

  19. Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20(12):2488–2503 doi:10.1016/j.bios.2004.10.016

    Article  CAS  Google Scholar 

  20. Ozinkas AJ (1994) Principles of fluorescence immunoassay. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum, New York

    Google Scholar 

  21. Van Dyke K, Van Dyke R (1990) Luminescence immunoassay and molecular applications. CRC, Boca Raton

    Google Scholar 

  22. Aslan K, Holley P, Geddes CD (2006) Microwave-accelerated metal-enhanced fluorescence (MAMEF) with silver colloids in 96-well plates: application to ultra fast and sensitive immunoassays, high throughput screening and drug discovery. J Immunol Methods 312(1–2):137–147 doi:10.1016/j.jim.2006.03.009

    Article  CAS  Google Scholar 

  23. Aslan K, Geddes CD (2006) Microwave accelerated and metal enhanced fluorescence myoglobin detection on silvered surfaces. Potential application myocard. Infarct Diagn Plasmonics 1(1):53–59

    Article  CAS  Google Scholar 

  24. Morrison L (2003) Fluorescence in nucleic acid hybridization assays. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. vol. 7. Kluwer Academic/Plenum, New York, pp 69–103

    Chapter  Google Scholar 

  25. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21(Suppl 1):33–37 doi:10.1038/4462

    Article  CAS  Google Scholar 

  26. Difilippantonio M, Ried T (2003) Technicolor genome analysis. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. vol. 7. Kluwer Academic/Plenum, New York, pp 291–316

    Chapter  Google Scholar 

  27. Aslan K, Malyn SN, Bector G, Geddes CD (2007) Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform. Analyst (Lond) 132(11):1122–1129 doi:10.1039/b708069g

    Article  CAS  Google Scholar 

  28. Aslan K, Malyn SN, Geddes CD (2006) Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence. Biochem Biophys Res Commun 348(2):612–617 doi:10.1016/j.bbrc.2006.07.093

    Article  CAS  Google Scholar 

  29. Aslan K, Luhrs CC, Perez-Luna VH (2004) Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin. J Phys Chem B 108(40):15631–15639 doi:10.1021/jp036089n

    Article  CAS  Google Scholar 

  30. Aslan K, Zhang Y, Hibbs S, Baillie L, Previte MJ, Geddes CD (2007) Microwave-accelerated metal-enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in <30 seconds. Analyst (Lond) 132(11):1130–1138 doi:10.1039/b707876e

    Article  CAS  Google Scholar 

  31. Redmond C, Baillie LWJ, Hibbs S, Moir AJG, Moir A (2004) Identification of proteins in the exosporium of Bacillus anthracis. Microbiology 150:355–363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Middle Atlantic Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (NIH NIAID—U54 AI057168) and National Institute of Neurological Disorders and Stroke NINDS—NS055187 and NS055187-S1. Salary support to the authors from UMBI and the IoF is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslan, K., Geddes, C.D. A Review of an Ultrafast and Sensitive Bioassay Platform Technology: Microwave-accelerated Metal-enhanced Fluorescence. Plasmonics 3, 89–101 (2008). https://doi.org/10.1007/s11468-008-9059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-008-9059-x

Keywords

Navigation