Skip to main content
Log in

A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Non-Hermitian systems with parity–time (PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer (WPT). The WPT system that satisfies PT-symmetry always has real eigenvalues, which promote efficient energy transfer. However, meeting the condition of PT-symmetry is one of the most puzzling issues. Stable power transfer under different transmission conditions is also a great challenge. Bound state in the continuum (BIC) supporting extreme quality-factor mode provides an opportunity for efficient WPT. Here, we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry, and it can even realize more stable and efficient power transfer than PT-symmetric systems. Importantly, BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems. Our results not only extend non-Hermitian physics beyond PT-symmetry, but also bridge the gap between BIC and practical application engineering, such as highperformance WPT, wireless sensing and communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data and code availability All the data and codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. A. Krasnok, D. G. Baranov, A. Generalov, S. Li, and A. Alu, Coherently enhanced wireless power transfer, Phys. Rev. Lett. 120(14), 143901 (2018)

    Article  ADS  Google Scholar 

  2. M. Song, P. Jayathurathnage, E. Zanganeh, M. Krasikova, P. Smirnov, P. Belov, P. Kapitanova, C. Simovski, S. Tretyakov, and A. Krasnok, Wireless power transfer based on novel physical concepts, Nat. Electron. 4(10), 707 (2021)

    Article  Google Scholar 

  3. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, Wireless power transfer via strongly coupled magnetic resonances, Science 317(5834), 83 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Y. Xie, Z. Zhang, Y. Lin, T. Feng, and Y. Xu, Magnetic quasi-bound state in the continuum for wireless power transfer, Phys. Rev. Appl. 15(4), 044024 (2021)

    Article  ADS  Google Scholar 

  5. S. Assawaworrarit, X. Yu, and S. Fan, Robust wireless power transfer using a nonlinear parity–time-symmetric circuit, Nature 546(7658), 387 (2017)

    Article  ADS  Google Scholar 

  6. J. Li and B. Zhang, A wireless power transfer system based on quasi-parity–time symmetry with gain–loss ratio modulation, Int. J. Circuit Theory Appl. 51(3), 1039 (2023)

    Article  Google Scholar 

  7. Z. Miao, D. Liu, and C. Gong, Efficiency enhancement for an inductive wireless power transfer system by optimizing the impedance matching networks, IEEE Trans. Biomed. Circuits Syst. 11(5), 1160 (2017)

    Article  Google Scholar 

  8. J. Song, F. Yang, Z. Guo, X. Wu, K. Zhu, J. Jiang, Y. Sun, Y. Li, H. Jiang, and H. Chen, Wireless power transfer via topological modes in dimer chains, Phys. Rev. Appl. 15(1), 014009 (2021)

    Article  ADS  Google Scholar 

  9. Z. Guo, J. Jiang, X. Wu, H. Zhang, S. Hu, Y. Wang, Y. Li, Y. Yang, and H. Chen, Rotation manipulation of high-order PT-symmetry for robust wireless power transfer, Fundamental Res., doi: https://doi.org/10.1016/j.fmre.2023.11.010 (2023)

  10. Z. Guo, F. Yang, H. Zhang, X. Wu, Q. Wu, K. Zhu, J. Jiang, H. Jiang, Y. Yang, Y. Li, and H. Chen, Level pinning of anti-PT symmetric circuits for efficient wireless power transfer, Natl. Sci. Rev. 11(1), nwad172 (2023)

    Article  Google Scholar 

  11. B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers, IEEE Trans. Power Electron. 24(7), 1819 (2009)

    Article  ADS  Google Scholar 

  12. L. Zhang, Y. Yang, Z. Jiang, Q. Chen, Q. Yan, Z. Wu, B. Zhang, J. Huangfu, and H. Chen, Demonstration of topological wireless power transfer, Sci. Bull. (Beijing) 66(10), 974 (2021)

    Article  ADS  Google Scholar 

  13. M. Sakhdari, M. Hajizadegan, and P. Y. Chen, Robust extended-range wireless power transfer using a higherorder PT-symmetric platform, Phys. Rev. Res. 2(1), 013152 (2020)

    Article  Google Scholar 

  14. J. Zhou, B. Zhang, W. Xiao, D. Qiu, and Y. Chen, Nonlinear parity–time-symmetric model for constant efficiency wireless power transfer: Application to a drone-in-flight wireless charging platform, IEEE Trans. Ind. Electron. 66(5), 4097 (2019)

    Article  Google Scholar 

  15. H. Kim, S. Yoo, H. Joo, J. Lee, D. An, S. Nam, H. Han, D. H. Kim, and S. Kim, Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity–time symmetry, Sci. Adv. 8(24), eabo4610 (2022)

    Article  ADS  Google Scholar 

  16. Z. Guo, Y. Long, H. Jiang, J. Ren, and H. Chen, Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources, Adv. Photonics 3(3), 036001 (2021)

    Article  ADS  Google Scholar 

  17. A. P. Sample, D. A. Meyer, and J. R. Smith, Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer, IEEE Trans. Ind. Electron. 58(2), 544 (2011)

    Article  Google Scholar 

  18. C. Zeng, Z. Guo, K. Zhu, C. Fan, G. Li, J. Jiang, Y. Li, H. Jiang, Y. Yang, Y. Sun, and H. Chen, Efficient and stable wireless power transfer based on the non-Hermitian physics, Chin. Phys. B 31(1), 010307 (2022)

    Article  ADS  Google Scholar 

  19. N. Tesla, Apparatus for transmitting electrical energy, U. S. Patent 1, 119,732 (1914)

    Google Scholar 

  20. T. Huang, B. Wang, W. Zhang, and C. Zhao, Ultracompact energy transfer in anapole-based metachains, Nano Lett. 21(14), 6102 (2021)

    Article  ADS  Google Scholar 

  21. B. X. Wang and C. Y. Zhao, Topological phonon polariton enhanced radiative heat transfer in bichromatic nanoparticle arrays mimicking Aubry–André–Harper model, Phys. Rev. B 107(12), 125409 (2023)

    Article  ADS  Google Scholar 

  22. Y. Wu, L. Kang, and D. H. Werner, Symmetry in non-Hermitian wireless power transfer systems, Phys. Rev. Lett. 129(20), 200201 (2022)

    Article  ADS  Google Scholar 

  23. X. Hao, K. Yin, J. Zou, R. Wang, Y. Huang, X. Ma, and T. Dong, Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics, Phys. Rev. Lett. 130(7), 077202 (2023)

    Article  ADS  Google Scholar 

  24. A. Li, H. Wei, M. Cotrufo, W. Chen, S. Mann, X. Ni, B. Xu, J. Chen, J. Wang, S. Fan, C. W. Qiu, A. Alù, and L. Chen, Exceptional points and non-Hermitian photonics at the nanoscale, Nat. Nanotechnol. 18(7), 706 (2023)

    Article  ADS  Google Scholar 

  25. C. Liang, Y. Tang, A. N. Xu, and Y. C. Liu, Observation of exceptional points in thermal atomic ensembles, Phys. Rev. Lett. 130(26), 263601 (2023)

    Article  ADS  Google Scholar 

  26. Y. Li, Y. Ao, X. Hu, C. Lu, C. T. Chan, and Q. Gong, Unsupervised learning of non-Hermitian photonic bulk topology, Laser Photonics Rev. 17(12), 2300481 (2023)

    Article  ADS  Google Scholar 

  27. S. Ke, W. Wen, D. Zhao, and Y. Wang, Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays, Phys. Rev. A 107(5), 053508 (2023)

    Article  ADS  Google Scholar 

  28. S. M. Zhang and L. Jin, Localization in non-Hermitian asymmetric rhombic lattice, Phys. Rev. Res. 2(3), 033127 (2020)

    Article  Google Scholar 

  29. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14(1), 11 (2018)

    Article  Google Scholar 

  30. C. M. Bender, S. Boettcher, and P. N. Meisinger, PT-symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  31. C. M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Experimental study of active LRC circuits with PT symmetries, Phys. Rev. A 84(4), 040101 (2011)

    Article  ADS  Google Scholar 

  33. S. Longhi, PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)

    Article  ADS  Google Scholar 

  34. Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)

    Article  ADS  Google Scholar 

  35. Z. Gao, S. T. M. Fryslie, B. J. Thompson, P. S. Carney, and K. D. Choquette, Parity–time symmetry in coherently coupled vertical cavity laser arrays, Optica 4(3), 323 (2017)

    Article  ADS  Google Scholar 

  36. J. M. Lee, S. Factor, Z. Lin, I. Vitebskiy, F. M. Ellis, and T. Kottos, Reconfigurable directional lasing modes in cavities with generalized PT symmetry, Phys. Rev. Lett. 112(25), 253902 (2014)

    Article  ADS  Google Scholar 

  37. Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, Experimental demonstration of a coherent perfect absorber with PT phase transition, Phys. Rev. Lett. 112(14), 143903 (2014)

    Article  ADS  Google Scholar 

  38. C. Wang, W. R. Sweeney, A. D. Stone, and L. Yang, Coherent perfect absorption at an exceptional point, Science 373(6560), 1261 (2021)

    Article  ADS  Google Scholar 

  39. M. Hajizadegan, M. Sakhdari, S. Liao, and P. Y. Chen, High-sensitivity wireless displacement sensing enabled by PT-symmetric telemetry, IEEE Trans. Antenn. Propag. 67(5), 3445 (2019)

    Article  ADS  Google Scholar 

  40. M. Sakhdari, M. Hajizadegan, Q. Zhong, D. N. Christodoulides, R. El-Ganainy, and P. Y. Chen, Experimental observation of PT symmetry breaking near divergent exceptional points, Phys. Rev. Lett. 123(19), 193901 (2019)

    Article  ADS  Google Scholar 

  41. Z. Xiao, H. Li, T. Kottos, and A. Alu, Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point, Phys. Rev. Lett. 123(21), 213901 (2019)

    Article  ADS  Google Scholar 

  42. Z. Guo, T. Zhang, J. Song, H. Jiang, and H. Chen, Sensitivity of topological edge states in a non-Hermitian dimer chain, Photon. Res. 9(4), 574 (2021)

    Article  Google Scholar 

  43. Y. Qu, B. Zhang, W. Gu, J. Li, and X. Shu, Distance extension of S-PS wireless power transfer system based on parity–time symmetry, IEEE Trans. Circuits Syst. II Express Briefs 70(8), 2954 (2023)

    Google Scholar 

  44. J. Kim, H.-C. Son, K.-H. Kim, and Y.-J. Park, Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil, IEEE Antennas Wirel. Propag. Lett. 10, 389 (2011)

    Article  ADS  Google Scholar 

  45. C. Saha, I. Anya, C. Alexandru, and R. Jinks, Wireless power transfer using relay resonators, Appl. Phys. Lett. 112(26), 263902 (2018)

    Article  ADS  Google Scholar 

  46. H. Chen, D. Qiu, C. Rong, and B. Zhang, A double-transmitting coil wireless power transfer system based on parity time symmetry principle, IEEE Trans. Power Electron. 38(11), 13396 (2023)

    Article  ADS  Google Scholar 

  47. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, Bound states in the continuum, Nat. Rev. Mater. 1(9), 16048 (2016)

    Article  ADS  Google Scholar 

  48. J. Wang, L. Shi, and J. Zi, Spin Hall effect of light via momentum-space topological vortices around bound sates in the continuum, Phys. Rev. Lett. 129(23), 236101 (2022)

    Article  ADS  Google Scholar 

  49. H. Zhang, S. Liu, Z. Guo, S. Hu, Y. Chen, Y. Li, Y. Li, and H. Chen, Topological bound state in the continuum induced unidirectional acoustic perfect absorption, Sci. China Phys. Mech. Astron. 66(8), 284311 (2023)

    Article  ADS  Google Scholar 

  50. X. X. Wang, Z. Guo, J. Song, H. Jiang, H. Chen, and X. Hu, Unique Huygens–Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal, Nat. Commun. 14(1), 3040 (2023)

    Article  ADS  Google Scholar 

  51. Q. Wang, C. Zhu, X. Zheng, H. Xue, B. Zhang, and Y. D. Chong, Continuum of bound states in a non-Hermitian model, Phys. Rev. Lett. 130(10), 103602 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  52. S. Fan, W. Suh, and J. D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators, J. Opt. Soc. Am. A 20(3), 569 (2003)

    Article  ADS  Google Scholar 

  53. Z. Guo, H. Jiang, Y. Li, H. Chen, and G. S. Agarwal, Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material, Opt. Express 26(2), 627 (2018)

    Article  ADS  Google Scholar 

  54. H. Zhang, K. Zhu, Z. Guo, Y. Chen, Y. Sun, J. Jiang, Y. Li, Z. Yu, and H. Chen, Robustness of wireless power transfer systems with parity–time symmetry and asymmetry, Energies 16(12), 4605 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2021YFA1400602 and 2023YFA1407600), the National Natural Science Foundation of China (Nos. 12004284 and 12374294), the Fundamental Research Funds for the Central Universities (No. 22120210579), and the Chenguang Program of Shanghai (Eo. 21CGA22).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Z. G., Y. C., and H. C. conceived the idea and supervised the project. H. Z. carried out the analytical calculations with the help of Y. Y., H. Z. prepared the sample and conducted experimental measurements with the help of Y. L., H. Z., Z. G., Y.C., and H. C. wrote the manuscript. All authors contributed to discussions of the results and the manuscript.

Corresponding authors

Correspondence to Zhiwei Guo or Yuguang Chen.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Guo, Z., Li, Y. et al. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer. Front. Phys. 19, 43209 (2024). https://doi.org/10.1007/s11467-023-1388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1388-x

Keywords

Navigation