Skip to main content
Log in

Topological bound state in the continuum induced unidirectional acoustic perfect absorption

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The interaction between cavity field and atoms plays an important role in exploring the abundant non-Hermitian physics and constructing powerful wave function devices. In this work, we propose theoretically and realize experimentally unidirectional perfect absorption in a non-Hermitian acoustic system with the help of the topological bound state in the continuum (BIC), which is established by the hybrid interaction between one trivial BIC and another conventional resonant state. In the 2D parameter space spanned by frequency and distance between the two resonators, the topological scattering singularities appear in pairs and are associated with topological distinguished charges. Meanwhile, we reveal the origin of topological charges and their continuous evolution with the loss factor. At a specific loss factor, two topological charges just annihilate together, and acoustic perfect absorption induced by topological BIC is realized at the left incidence, while there is no phase singularity and near-total reflection is observed at the right incidence, hence the system presents extreme asymmetry. Our work bridges the gap between scattering characteristics of non-Hermitian acoustic systems and topological scattering singularities, which may contribute to the research of novel non-Hermitian physics and the practical applications of advanced absorbers and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kim, A. Baucour, Y. S. Choi, J. Shin, and M. K. Seo, Nature 611, 48 (2022).

    Article  ADS  Google Scholar 

  2. Z. Sakotic, A. Krasnok, A. Alú, and N. Jankovic, Photon. Res. 9, 1310 (2021).

    Article  Google Scholar 

  3. Z. Sakotic, P. Stankovic, V. Bengin, A. Krasnok, A. Alú, and N. Jankovic, Laser Photon. Rev. 17, 2200308 (2023).

    Article  ADS  Google Scholar 

  4. S. Huang, S. Xie, H. Gao, T. Hao, S. Zhang, T. Liu, Y. Li, and J. Zhu, Fundam. Res., https://doi.org/10.1016/j.fmre.2022.06.009.

  5. M. Liu, C. Zhao, Y. Zeng, Y. Chen, C. Zhao, and C. W. Qiu, Phys. Rev. Lett. 127, 266101 (2021).

    Article  ADS  Google Scholar 

  6. Z. Guo, T. Zhang, J. Song, H. Jiang, and H. Chen, Photon. Res. 9, 574 (2021).

    Article  Google Scholar 

  7. Z. Hou, H. Ding, N. Wang, X. Fang, and Y. Li, Phys. Rev. Appl. 16, 014002 (2021).

    Article  ADS  Google Scholar 

  8. Y. Fu, Y. Tian, X. Li, S. Yang, Y. Liu, Y. Xu, and M. Lu, Phys. Rev. Lett. 128, 104501 (2022).

    Article  ADS  Google Scholar 

  9. M. A. Miri, and A. Alù, Science 363, eaar7709 (2019).

    Article  Google Scholar 

  10. X. Wang, X. Fang, D. Mao, Y. Jing, and Y. Li, Phys. Rev. Lett. 123, 214302 (2019).

    Article  ADS  Google Scholar 

  11. H. Z. Chen, T. Liu, H. Y. Luan, R. J. Liu, X. Y. Wang, X. F. Zhu, Y. B. Li, Z. M. Gu, S. J. Liang, H. Gao, L. Lu, L. Ge, S. Zhang, J. Zhu, and R. M. Ma, Nat. Phys. 16, 571 (2020).

    Article  Google Scholar 

  12. Z. Gu, H. Gao, P. C. Cao, T. Liu, X. F. Zhu, and J. Zhu, Phys. Rev. Appl. 16, 057001 (2021).

    Article  ADS  Google Scholar 

  13. W. Zhu, X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen, Phys. Rev. Lett. 121, 124501 (2018).

    Article  ADS  Google Scholar 

  14. H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Science 346, 975 (2014).

    Article  ADS  Google Scholar 

  15. M. Harder, Y. Yang, B. Yao, C. Yu, J. Rao, Y. Gui, R. Stamps, and C. M. Hu, Phys. Rev. Lett. 121, 137203 (2018).

    Article  ADS  Google Scholar 

  16. H. Pan, Y. Yang, Z. H. An, and C. M. Hu, Phys. Rev. B 106, 054425 (2022).

    Article  ADS  Google Scholar 

  17. B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).

    Article  Google Scholar 

  18. Y. P. Wang, J. Rao, Y. Yang, P. C. Xu, Y. Gui, B. Yao, J. You, and C. M. Hu, Phys. Rev. Lett. 123, 127202 (2019).

    Article  ADS  Google Scholar 

  19. X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, Phys. Rev. X 4, 031042 (2014).

    Google Scholar 

  20. C. Shen, J. Li, X. Peng, and S. A. Cummer, Phys. Rev. Mater. 2, 125203 (2018).

    Article  Google Scholar 

  21. J. W. Rao, P. C. Xu, Y. S. Gui, Y. P. Wang, Y. Yang, B. Yao, J. Dietrich, G. E. Bridges, X. L. Fan, D. S. Xue, and C. M. Hu, Nat. Commun. 12, 1933 (2021).

    Article  ADS  Google Scholar 

  22. Y. Sun, W. Tan, H. Li, J. Li, and H. Chen, Phys. Rev. Lett. 112, 143903 (2014).

    Article  ADS  Google Scholar 

  23. Y. Huang, G. Veronis, and C. Min, Opt. Express 23, 29882 (2015).

    Article  ADS  Google Scholar 

  24. C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y. Wang, and X. Zhang, Nat. Commun. 7, 11110 (2016).

    Article  ADS  Google Scholar 

  25. Z. Guo, Y. Long, H. Jiang, J. Ren, and H. Chen, Adv. Photon. 3, 036001 (2021).

    Article  ADS  Google Scholar 

  26. T. Liu, X. Zhu, F. Chen, S. Liang, and J. Zhu, Phys. Rev. Lett. 120, 124502 (2018).

    Article  ADS  Google Scholar 

  27. C. Wang, W. R. Sweeney, A. D. Stone, and L. Yang, Science 373, 1261 (2021).

    Article  ADS  Google Scholar 

  28. A. Merkel, G. Theocharis, O. Richoux, V. Romero-García, and V. Pagneux, Appl. Phys. Lett. 107, 244102 (2015).

    Article  ADS  Google Scholar 

  29. H. Long, C. Liu, C. Shao, Y. Cheng, J. Tao, X. Qiu, and X. Liu, J. Sound Vib. 479, 115371 (2020).

    Article  Google Scholar 

  30. D. T. Li, S. B. Huang, Y. Cheng, and Y. Li, Sci. China-Phys. Mech. Astron. 64, 244303 (2021).

    Article  ADS  Google Scholar 

  31. A. Krasnok, D. Baranov, H. Li, M. A. Miri, F. Monticone, and A. Alú, Adv. Opt. Photon. 11, 892 (2019).

    Article  Google Scholar 

  32. D. V. Novitsky, A. C. Valero, A. Krotov, T. Salgals, A. S. Shalin, and A. V. Novitsky, ACS Photon. 9, 3035 (2022).

    Article  Google Scholar 

  33. R. Röhlsberger, H. C. Wille, K. Schlage, and B. Sahoo, Nature 482, 199 (2012).

    Article  ADS  Google Scholar 

  34. B. Zare Rameshti, S. Viola Kusminskiy, J. A. Haigh, K. Usami, D. Lachance-Quirion, Y. Nakamura, C. M. Hu, H. X. Tang, G. E. W. Bauer, and Y. M. Blanter, Phys. Rep. 979, 1 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  35. Y. Hu, W. Liu, Y. Sun, X. Shi, J. Jiang, Y. Yang, S. Zhu, J. Evers, and H. Chen, Phys. Rev. A 92, 053824 (2015).

    Article  ADS  Google Scholar 

  36. Y. X. Shen, Y. G. Peng, D. G. Zhao, X. C. Chen, J. Zhu, and X. F. Zhu, Phys. Rev. Lett. 122, 094501 (2019).

    Article  ADS  Google Scholar 

  37. Y. X. Shen, Y. G. Peng, P. C. Cao, J. Li, and X. F. Zhu, Phys. Rev. B 105, 104102 (2022).

    Article  ADS  Google Scholar 

  38. J. Wang, B. Yuan, Y. Cheng, and X. Liu, Sci. China Phys. Mech. Astron. 58, 1 (2015).

    Google Scholar 

  39. S. Huang, T. Liu, Z. Zhou, X. Wang, J. Zhu, and Y. Li, Phys. Rev. Appl. 14, 021001 (2020).

    Article  ADS  Google Scholar 

  40. L. Huang, B. Jia, A. S. Pilipchuk, Y. Chiang, S. Huang, J. Li, C. Shen, E. N. Bulgakov, F. Deng, D. A. Powell, S. A. Cummer, Y. Li, A. F. Sadreev, and A. E. Miroshnichenko, Phys. Rev. Appl. 18, 054021 (2022).

    Article  ADS  Google Scholar 

  41. H. Long, Y. Cheng, and X. Liu, Appl. Phys. Lett. 111, 143502 (2017).

    Article  ADS  Google Scholar 

  42. L. Huang, B. Jia, Y. K. Chiang, S. Huang, C. Shen, F. Deng, T. Yang, D. A. Powell, Y. Li, and A. E. Miroshnichenko, Adv. Sci. 9, 2200257 (2022).

    Article  Google Scholar 

  43. L. Huang, Y. K. Chiang, S. Huang, C. Shen, F. Deng, Y. Cheng, B. Jia, Y. Li, D. A. Powell, and A. E. Miroshnichenko, Nat. Commun. 12, 4819 (2021).

    Article  ADS  Google Scholar 

  44. B. H. Song, and J. S. Bolton, J. Acoust. Soc. Am. 107, 1131 (2000).

    Article  ADS  Google Scholar 

  45. G. Ermolaev, K. Voronin, D. G. Baranov, V. Kravets, G. Tselikov, Y. Stebunov, D. Yakubovsky, S. Novikov, A. Vyshnevyy, A. Mazitov, I. Kruglov, S. Zhukov, R. Romanov, A. M. Markeev, A. Arsenin, K. S. Novoselov, A. N. Grigorenko, and V. Volkov, Nat. Commun. 13, 2049 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwei Guo, Yunhui Li or Yong Li.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400602), the National Natural Science Foundation of China (Grant Nos. 12074286, and 12004284), the Shanghai Science and Technology Committee (Grant No. 21JC1405600), the Fundamental Research Funds for the Central Universities (Grant No. 22120210579), and the Chenguang Program of Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (Grant No. 21CGA22).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, S., Guo, Z. et al. Topological bound state in the continuum induced unidirectional acoustic perfect absorption. Sci. China Phys. Mech. Astron. 66, 284311 (2023). https://doi.org/10.1007/s11433-023-2136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2136-y

Navigation