Skip to main content
Log in

Investigations of nuclear chirality at iThemba LABS

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Progress in the studies of chirality in atomic nuclei at iThemba LABS is reviewed. New regions of chirality, around mass 80 and 190 have been discovered using the AFRODITE array, specifically in the nuclei 74As, 78,80,82Br, 81Kr, and 193,194,198Tl. Many phenomena have been observed, including multiple chiral bands in the same nucleus, the coexistence of octupole correlations and nuclear chirality, and the coexistence of pseudo spin and nuclear chirality. The best example of chiral degeneracy to date was found in 194Tl. The level scheme of 106Ag has been revisited and interpreted in terms of two- and four-quasiparticle bands. Investigations using the particle-rotor model have shown that the fingerprints of chirality in the two-quasiparticle system only can occur in an idealised model description. For systems with a higher number of quasiparticles, the calculations showed that nuclear chirality can persist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. S. Frauendorf and J. Meng, Tilted rotation of triaxial nuclei, Nucl. Phys. A 617(2), 131 (1997)

    Article  ADS  Google Scholar 

  2. B. W. Xiong and Y. Y. Wang, Nuclear chiral doublet bands data tables, At. Data Nucl. Data Tables 125, 193 (2019)

    Article  ADS  Google Scholar 

  3. E. A. Lawrie and O. Shirinda, Reaching degeneracy in two-quasiparticle chiral bands, Phys. Lett. B 689(2–3), 66 (2010)

    Article  ADS  Google Scholar 

  4. P. B. Semmes and I. Ragnarsson, in: J. X. Saladin, R. A. Sorenson, and C. M. Vincent (Eds.), Proc. Int. Conf. on High-Spin Physics and Gamma-Soft Nuclei, Pittsburgh, 1990, World Scientific, 1991, p. 500

    Google Scholar 

  5. P. B. Semmes and I. Ragnarsson, in: J. Dudek and B. Haas (Eds.), Proc. Future Directions in Nuclear Physics with 4π Gamma Detection Systems of the New Generation, in: AIP Conf. Proc. 259(566), 1992

  6. O. Shirinda and E. A. Lawrie, Identifying chiral bands in real nuclei, Eur. Phys. J. A 48(9), 118 (2012)

    Article  ADS  Google Scholar 

  7. T. Koike, K. Starosta, and I. Hamamoto, Chiral bands, dynamical spontaneous symmetry breaking, and the selection rule for electromagnetic transitions in the chiral geometry, Phys. Rev. Lett. 93(17), 172502 (2004)

    Article  ADS  Google Scholar 

  8. C. Vaman, D. B. Fossan, T. Koike, K. Starosta, I. Y. Lee, and A. O. Macchiavelli, Chiral degeneracy in triaxial 104Rh, Phys. Rev. Lett. 92(3), 032501 (2004)

    Article  ADS  Google Scholar 

  9. S. Mukhopadhyay, D. Almehed, U. Garg, S. Frauendorf, T. Li, P. V. M. Rao, X. Wang, S. S. Ghugre, M. P. Carpenter, S. Gros, A. Hecht, R. V. F. Janssens, F. G. Kondev, T. Lauritsen, D. Seweryniak, and S. Zhu, From chiral vibration to static chirality in 135Nd, Phys. Rev. Lett. 99(17), 172501 (2007)

    Article  ADS  Google Scholar 

  10. P. L. Masiteng, E. A. Lawrie, T. M. Ramashidzha, R. A. Bark, B. G. Carlsson, J. J. Lawrie, R. Lindsay, F. Komati, J. Kau, P. Maine, S. M. Maliage, I. Matamba, S. M. Mullins, S. H. T. Murray, K. P. Mutshena, A. A. Pasternak, I. Ragnarsson, D. G. Roux, J. F. Sharpey-Schafer, O. Shirinda, and P. A. Vymers, Close near-degeneracy in a pair of four-quasiparticle bands in 194Tl, Phys. Lett. B 719(1–3), 83 (2013)

    Article  ADS  Google Scholar 

  11. O. Shirinda, E. A. Lawrie, and B. G. Carlsson, Can a chiral system be built on a strongly asymmetric nucleon configuration? Acta Phys. Pol. B 44(3), 341 (2013)

    Article  ADS  Google Scholar 

  12. B. G. Carlsson and I. Ragnarsson, Many-particles-plus-rotor description of magnetic bands at high spin, Phys. Rev. C Nucl. Phys. 74(4), 044310 (2006)

    Article  ADS  Google Scholar 

  13. O. Shirinda and E. A. Lawrie, Multiple many-particle chiral systems described within the particle-rotor model, Eur. Phys. J. A 52(11), 344 (2016)

    Article  ADS  Google Scholar 

  14. O. Shirinda and E. A. Lawrie, Multiple chiral bands built on the same many-particle nucleon configuration in the 100 mass region, Acta Phys. Pol. B Proc. Suppl. 11(1), 149 (2018)

    Article  Google Scholar 

  15. E. A. Lawrie, Decay patterns of multi-quasiparticle bands — a model independent test of chiral symmetry, Phys. Scr. 92(9), 094006 (2017)

    Article  ADS  Google Scholar 

  16. R. Bass, Nuclear Reactions with Heavy Ions, Springer Verlag, Berlin, Heidelberg, New York, 1980

    Google Scholar 

  17. R. Schwengner, F. Dönau, T. Servene, H. Schnare, J. Reif, G. Winter, L. Käubler, H. Prade, S. Skoda, J. Eberth, H. G. Thomas, F. Becker, B. Fiedler, S. Freund, S. Kasemann, T. Steinhardt, O. Thelen, T. Härtlein, C. Ender, F. Köck, P. Reiter, and D. Schwalm, Magnetic and collective rotation in 79Br, Phys. Rev. C 65(4), 044326 (2002)

    Article  ADS  Google Scholar 

  18. J. S. Dionisio, R. Meunier, C. Schück, C. Vieu, J. M. Lagrange, M. Pautrat, J. C. S. Bacelar, J. R. Jongman, W. R. Phillips, J. L. Durell, W. Urban, B. J. Varley, and H. Folger, Target structure and in-beam electron spectra, Nucl. Instrum. Methods Phys. Res. A 362(1), 122 (1995)

    Article  ADS  Google Scholar 

  19. X. Xiao, S. Y. Wang, C. Liu, R. A. Bark, J. Meng, S. Q. Zhang, B. Qi, H. Hua, P. Jones, S. M. Wyngaardt, S. Wang, D. P. Sun, Z. Q. Li, N. B. Zhang, H. Jia, R. J. Guo, X. C. Han, L. Mu, X. Lu, W. Z. Xu, C. Y. Niu, C. G. Wang, E. A. Lawrie, J. J. Lawrie, J. F. Sharpey-Schafer, M. Wiedeking, S. N. T. Majola, T. D. Bucher, T. Dinoko, B. Maqabuka, L. Makhathini, L. Mdletshe, N. A. Khumalo, O. Shirinda, and K. Sowazi, Chirality and octupole correlations in 74As, Phys. Rev. C 106(6), 064302 (2022)

    Article  ADS  Google Scholar 

  20. C. Liu, S. Y. Wang, R. A. Bark, S. Q. Zhang, J. Meng, B. Qi, P. Jones, S. M. Wyngaardt, J. Zhao, C. Xu, S. G. Zhou, S. Wang, D. P. Sun, L. Liu, Z. Q. Li, N. B. Zhang, H. Jia, X. Q. Li, H. Hua, Q. B. Chen, Z. G. Xiao, H. J. Li, L. H. Zhu, T. D. Bucher, T. Dinoko, J. Easton, K. Juhász, A. Kamblawe, E. Khaleel, N. Khumalo, E. A. Lawrie, J. J. Lawrie, S. N. T. Majola, S. M. Mullins, S. Murray, J. Ndayishimye, D. Negi, S. P. Noncolela, S. S. Ntshangase, B. M. Nyakó, J. N. Orce, P. Papka, J. F. Sharpey-Schafer, O. Shirinda, P. Sithole, M. A. Stankiewicz, and M. Wiedeking, Evidence for octupole correlations in multiple chiral doublet bands, Phys. Rev. Lett. 116(11), 112501 (2016)

    Article  ADS  Google Scholar 

  21. S. Y. Wang, B. Qi, L. Liu, S. Q. Zhang, H. Hua, X. Q. Li, Y. Y. Chen, L. H. Zhu, J. Meng, S. M. Wyngaardt, P. Papka, T. T. Ibrahim, R. A. Bark, P. Datta, E. A. Lawrie, J. J. Lawrie, S. N. T. Majola, P. L. Masiteng, S. M. Mullins, J. Gál, G. Kalinka, J. Molnár, B. M. Nyakó, J. Timár, K. Juhász, and R. Schwengner, The first candidate for chiral nuclei in the A ∼ 80 mass region: 80Br, Phys. Lett. B 703(1), 40 (2011)

    Article  ADS  Google Scholar 

  22. L. Mu, S. Y. Wang, C. Liu, B. Qi, R. A. Bark, J. Meng, S. Q. Zhang, P. Jones, S. M. Wyngaardt, H. Jia, Q. B. Chen, Z. Q. Li, S. Wang, D. P. Sun, R. J. Guo, X. C. Han, W. Z. Xu, X. Xiao, P. Y. Zhu, H. W. Li, H. Hua, X. Q. Li, C. G. Li, R. Han, B. H. Sun, L. H. Zhu, T. D. Bucher, B. V. Kheswa, N. Khumalo, E. A. Lawrie, J. J. Lawrie, K. L. Malatji, L. Msebi, J. Ndayishimye, J. F. Sharpey-Schafer, O. Shirinda, M. Wiedeking, T. Dinoko, and S. S. Ntshangase, First observation of the coexistence of multiple chiral doublet bands and pseudospin doublet bands in the A ≈ 80 mass region, Phys. Lett. B 827, 137006 (2022)

    Article  Google Scholar 

  23. C. Liu, S. Y. Wang, B. Qi, S. Wang, D. P. Sun, Z. Q. Li, R. A. Bark, P. Jones, J. J. Lawrie, L. Masebi, M. Wiedeking, J. Meng, S. Q. Zhang, H. Hua, X. Q. Li, C. G. Li, R. Han, S. M. Wyngaardt, B. H. Sun, L. H. Zhu, T. D. Bucher, B. V. Kheswa, K. L. Malatji, J. Ndayishimye, O. Shirinda, T. Dinoko, N. Khumalo, E. A. Lawrie, and S. S. Ntshangase, New candidate chiral nucleus in the A ≈ 80 mass region: 47,35,82Br, Phys. Rev. C 100(5), 054309 (2019)

    Article  ADS  Google Scholar 

  24. E. O. Lieder, R. M. Lieder, R. A. Bark, Q. B. Chen, S. Q. Zhang, J. Meng, E. A. Lawrie, J. J. Lawrie, S. P. Bvumbi, N. Y. Kheswa, S. S. Ntshangase, T. E. Madiba, P. L. Masiteng, S. M. Mullins, S. Murray, P. Papka, D. G. Roux, O. Shirinda, Z. H. Zhang, P. W. Zhao, Z. P. Li, J. Peng, B. Qi, S. Y. Wang, Z. G. Xiao, and C. Xu, Resolution of chiral conundrum in 106 Ag: Doppler-shift lifetime investigation, Phys. Rev. Lett. 112(20), 202502 (2014)

    Article  ADS  Google Scholar 

  25. J. Ndayishimye, E. A. Lawrie, O. Shirinda, J. L. Easton, J. J. Lawrie, S. M. Wyngaardt, R. A. Bark, T. D. Bucher, S. P. Bvumbi, T. R. S. Dinoko, P. Jones, N. Y. Kheswa, S. N. T. Majola, P. L. Masiteng, D. Negi, J. N. Orce, J. F. Sharpey-Schafer, and M. Wiedeking, Competition of rotation around the intermediate and long axes in 193Tl, Phys. Rev. C 100(1), 014313 (2019)

    Article  ADS  Google Scholar 

  26. P. L. Masiteng, E. A. Lawrie, T. M. Ramashidzha, J. J. Lawrie, R. A. Bark, R. Lindsay, F. Komati, J. Kau, P. Maine, S. M. Maliage, I. Matamba, S. M. Mullins, S. H. T. Murray, K. P. Mutshena, A. A. Pasternak, D. G. Roux, J. F. Sharpey-Schafer, O. Shirinda, and P. A. Vymers, Rotational bands and chirality in 194Tl, Eur. Phys. J. A 50(7), 119 (2014)

    Article  ADS  Google Scholar 

  27. P. L. Masiteng, A. A. Pasternak, E. A. Lawrie, O. Shirinda, J. J. Lawrie, R. A. Bark, S. P. Bvumbi, N. Y. Kheswa, R. Lindsay, E. O. Lieder, R. M. Lieder, T. E. Madiba, S. M. Mullins, S. H. T. Murray, J. Ndayishimye, S. S. Ntshangase, P. Papka, and J. F. Sharpey-Schafer, Sharpey-Schafer, DSAM lifetime measurements for the chiral pair in 194Tl, Eur. Phys. J. A 52(2), 28 (2016)

    Article  ADS  Google Scholar 

  28. E. A. Lawrie, P. A. Vymers, J. J. Lawrie, Ch. Vieu, R. A. Bark, R. Lindsay, G. K. Mabala, S. M. Maliage, P. L. Masiteng, S. M. Mullins, S. H. T. Murray, I. Ragnarsson, T. M. Ramashidza, C. Shück, J. F. Sharpey-Schafer, and O. Shirinda, Possible chirality in the doubly-odd 198Tl nucleus: Residual interaction at play, Phys. Rev. C 78, 021305(R) (2008)

    Article  ADS  Google Scholar 

  29. E. A. Lawrie, P. A. Vymers, Ch. Vieu, J. J. Lawrie, C. Schück, R. A. Bark, R. Lindsay, G. K. Mabala, S. M. Maliage, P. L. Masiteng, S. M. Mullins, S. H. T. Murray, I. Ragnarsson, T. M. Ramashidzha, J. F. Sharpey-Schafer, and O. Shirinda, Candidate chiral bands in 198Tl, Eur. Phys. J. A 45(1), 39 (2010)

    Article  ADS  Google Scholar 

  30. J. L. Conradie, et al., New Developments at iThemba LABS, in: Proc. CYC’16, Zurich, Switzerland, 2016, pp 274–277

  31. P. Sortais, Recent progress in making highly charged ion beams, Nucl. Instrum. Methods Phys. Res. B 98(1–4), 508 (1995)

    Article  ADS  Google Scholar 

  32. H. Waldmann and B. Martin, Highly charged metal ion beams produced from organometallic compounds, Nucl. Instrum. Methods Phys. Res. B 98(1–4), 532 (1995)

    Article  ADS  Google Scholar 

  33. D. Hitz, D. Cormier, and J. M. Mathonnet, Proc. EPAC’02, Paris, France, 2002, paper THPRI005, page 1718

  34. R. T. Newman, et al., Proceedings of the Balkan School on Nuclear Physics, Balkan Phys. Lett. Special Issue 182, (1998)

  35. J. F. Sharpey-Schafer, Laboratory portrait: iThemba laboratory for accelerator-based sciences, Nucl. Phys. News 14(1), 5 (2004)

    Article  ADS  Google Scholar 

  36. M. Moszyński and G. Duchêne, Ballistic deficit correction methods for large Ge detectors, Nucl. Instrum. Methods Phys. Res. A 308(3), 557 (1991)

    Article  ADS  Google Scholar 

  37. P. J. Nolan, G. A. Beck, and D. B. Fossan, Large arrays of escape-suppressed gamma-ray detectors, Annu. Rev. Nucl. Part. Sci. 44(1), 561 (1994)

    Article  ADS  Google Scholar 

  38. R. M. Lieder, Experimental Techniques in Nuclear Physics, Ed. D. N. Poenaru and W. Greiner, Walter de Gruyter, Berlin, 1997, page 137

    Google Scholar 

  39. URL: https://xia.com/products/pixie-16/

  40. K. S. Krane, R. M. Steffen, and R. M. Wheeler, Directional correlations of gamma radiations emitted from nuclear states oriented by nuclear reactions or cryogenic methods, At. Data Nucl. Data Tables 11(5), 351 (1973)

    Article  ADS  Google Scholar 

  41. L. W. Fagg and S. S. Hanna, Polarization measurements on nuclear gamma rays, Rev. Mod. Phys. 31(3), 711 (1959)

    Article  ADS  Google Scholar 

  42. K. Starosta, T. Morek, C. Droste, S. G. Rohoziński, J. Srebrny, A. Wierzchucka, M. Bergström, B. Herskind, E. Melby, T. Czosnyka, and P. J. Napiorkowski, Experimental test of the polarization direction correlation method (PDCO), Nucl. Instrum. Methods Phys. Res. A 423(1), 16 (1999)

    Article  ADS  Google Scholar 

  43. E. O. Lieder, A. A. Pasternak, R. M. Lieder, A. D. Efimov, V. M. Mikhajlov, B. G. Carlsson, I. Ragnarsson, W. Gast, T. Venkova, T. Morek, S. Chmel, G. de Angelis, D. R. Napoli, A. Gadea, D. Bazzacco, R. Menegazzo, S. Lunardi, W. Urban, C. Droste, T. Rzaca-Urban, G. Duchêne, and A. Dewald, Investigation of lifetimes in quadrupole bands of 142Gd, Eur. Phys. J. A 35(2), 135 (2008)

    Article  ADS  Google Scholar 

  44. R. M. Lieder, A. A. Pasternak, E. O. Podsvirova, A. D. Efimov, V. M. Mikhajlov, R. Wyss, T. Venkova, W. Gast, H. M. Jäger, L. Mihailescu, D. Bazzacco, S. Lunardi, R. Menegazzo, C. Rossi Alvarez, G. de Angelis, D. R. Napoli, T. Rzaca-Urban, W. Urban, and A. Dewald, Investigations of the level scheme of 144Gd and lifetimes in the quadrupole bands, Eur. Phys. J. A 21(1), 37 (2004)

    Article  ADS  Google Scholar 

  45. E. Grodner, A. A. Pasternak, C. Droste, T. Morek, J. Srebrny, J. Kownacki, W. Plóciennik, A. A. Wasilewski, M. Kowalczyk, M. Kisieliński, R. Kaczarowski, E. Ruchowska, A. Kordyasz, and M. Wolińska, Lifetimes and side-feeding population of the yrast band levels in 131La, Eur. Phys. J. A 27(3), 325 (2006)

    Article  ADS  Google Scholar 

  46. T. Belgya, O. Bersillon, R. Capote Noy, T. Fukahori, G. Zhigang, S. Goriely, M. Herman, A. V. Ignatyuk, S. Kailas, A. J. Koning, P. Oblozinsky, V. Plujko, and P. G. Young, Handbook for Calculations of Nuclear Reaction Data, RIPL-2, IAEA-TECDOC-1506, IAEA, Vienna, 2006

    Google Scholar 

  47. R. M. Lieder, A. A. Pasternak, E. O. Lieder, W. Gast, G. de Angelis, and D. Bazzacco, Investigation of γ-ray fold distributions in N ≤ 82 Gd, Eu and Sm nuclei: Observation of a double-humped fold distribution, Eur. Phys. J. A 47(9), 115 (2011)

    Article  ADS  Google Scholar 

  48. J. N. Scheurer, M. Aiche, M. M. Aleonard, G. Barreau, F. Bourgine, D. Boivin, D. Cabaussel, J. F. Chemin, T. P. Doan, J. P. Goudour, M. Harston, A. Brondi, G. La Rana, R. Moro, E. Vardaci, and D. Curien, Improvements in the in-beam γ-ray spectroscopy provided by an ancillary detector coupled to a Ge γ-spectrometer: The DIAMANT-EUROGAM II example, Nucl. Instrum. Methods Phys. Res. A 385(3), 501 (1997)

    Article  ADS  Google Scholar 

  49. J. Gál, G. Hegyesi, J. Molnár, B. M. Nyakó, G. Kalinka, J. N. Scheurer, M. M. Aléonard, J. F. Chemin, J. L. Pedroza, K. Juhász, and V. F. E. Pucknell, The VXI electronics of the DIAMANT particle detector array, Nucl. Instrum. Methods Phys. Res. A 516(2–3), 502 (2004)

    Article  ADS  Google Scholar 

  50. F. S. Komati, R. A. Bark, J. Gál, E. Gueorguieva, K. Juhász, G. Kalinka, A. Krasznahorkay, J. J. Lawrie, M. Lipoglavšek, M. Maliage, J. Molnár, S. M. Mullins, S. H. T. Murray, B. M. Nyakó, M. Ramashidza, J. F. Sharpey-Schafer, J. N. Scheurer, J. Timár, P. Vymers, and L. Zolnai, Commissioning of the DIAMANT “chessboard” light-charged-particle CsI detector array with AFRODITE, AIP Conf. Proc. 802, 215 (2005)

    Article  ADS  Google Scholar 

  51. C. M. Petrache, G. B. Hagemann, I. Hamamoto, and K. Starosta, Risk of misinterpretation of nearly degenerate pair bands as chiral partners in nuclei, Phys. Rev. Lett. 96(11), 112502 (2006)

    Article  ADS  Google Scholar 

  52. D. Tonev, G. de Angelis, P. Petkov, A. Dewald, S. Brant, S. Frauendorf, D. L. Balabanski, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, A. Fitzler, A. Gadea, S. Lenzi, S. Lunardi, N. Marginean, O. Möller, D. R. Napoli, A. Paleni, C. M. Petrache, G. Prete, K. O. Zell, Y. H. Zhang, J. Zhang, Q. Zhong, and D. Curien, Transition probabilities in 134Pr: A test for chirality in nuclear systems, Phys. Rev. Lett. 96(5), 052501 (2006)

    Article  ADS  Google Scholar 

  53. K. Starosta, T. Koike, C. J. Chiara, D. B. Fossan, D. R. LaFosse, A. A. Hecht, C. W. Beausang, M. A. Caprio, J. R. Cooper, R. Krücken, J. R. Novak, N. V. Zamfir, K. E. Zyromski, D. J. Hartley, D. L. Balabanski, J. Zhang, S. Frauendorf, and V. I. Dimitrov, Chiral doublet structures in odd–odd N = 75 isotones: Chiral vibrations, Phys. Rev. Lett. 86(6), 971 (2001)

    Article  ADS  Google Scholar 

  54. R. A. Bark, A. M. Baxter, A. P. Byrne, G. D. Dracoulis, T. Kibedí, T. R. Mc Goram, and S. M. Mullins, Candidate chiral band in La, Nucl. Phys. A 691(3–4), 577 (2001)

    Article  ADS  Google Scholar 

  55. E. Grodner, J. Srebrny, A. A. Pasternak, I. Zalewska, T. Morek, C. Droste, J. Mierzejewski, M. Kowalczyk, J. Kownacki, M. Kisieliński, S. G. Rohoziński, T. Koike, K. Starosta, A. Kordyasz, P. J. Napiorkowski, M. Wolińska-Cichocka, E. Ruchowska, W. Płóciennik, and J. Perkowski, 128Cs as the best example revealing chiral symmetry breaking, Phys. Rev. Lett. 97(17), 172501 (2006)

    Article  ADS  Google Scholar 

  56. I. Ray, P. Banerjee, S. Bhattacharya, M. Saha-Sarkar, S. Muralithar, R. P. Singh, and R. K. Bhowmik, Structure of positive-parity yrast band in Br, Nucl. Phys. A 678(3), 258 (2000)

    Article  ADS  Google Scholar 

  57. J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Possible existence of multiple chiral doublets in 106Rh, Phys. Rev. C 73(3), 037303 (2006)

    Article  ADS  Google Scholar 

  58. S. Q. Zhang, B. Qi, S. Y. Wang, and J. Meng, Chiral bands for a quasi-proton and quasi-neutron coupled with a triaxial rotor, Phys. Rev. C 75(4), 044307 (2007)

    Article  ADS  Google Scholar 

  59. L. Esser, U. Neuneyer, R. F. Casten, and P. von Brentano, Correlations of the deformation variables β and γ in even–even Hf, W, Os, Pt, and Hg nuclei, Phys. Rev. C 55(1), 206 (1997)

    Article  ADS  Google Scholar 

  60. Y. Tanaka and R. K. Sheline, Comparison of calculated and experimental band structure in odd-A nuclei with A = 187–199, Nucl. Phys. A 276(1), 101 (1977)

    Article  ADS  Google Scholar 

  61. J. Meyer-Ter-Vehn, Collective model description of transitional odd-A nuclei, Nucl. Phys. A 249(1), 141 (1975)

    Article  ADS  Google Scholar 

  62. H. Toki, H. L. Yadav, and A. Faessler, Decoupled and strongly coupled particles system in odd–odd mass nuclei, Phys. Lett. B 71, 1 (1977)

    Article  ADS  Google Scholar 

  63. R. A. Bark, J. M. Espino, W. Reviol, P. B. Semmes, H. Carlsson, I. G. Bearden, G. B. Hagemann, H. J. Jensen, I. Ragnarsson, L. L. Riedinger, H. Ryde, and P. O. Tjϕm, Signature inversion in semi-decoupled bands: Residual interaction between h92 protons and i132 neutrons, Phys. Lett. B 406(3), 193 (1997) [Erratum: Phys. Lett. B 416, 453 (1998)]

    Article  ADS  Google Scholar 

  64. H. Pai, G. Mukherjee, S. Bhattacharyya, M. R. Gohil, T. Bhattacharjee, C. Bhattacharya, R. Palit, S. Saha, J. Sethi, T. Trivedi, S. Thakur, B. S. Naidu, S. K. Jadav, R. Donthi, A. Goswami, and S. Chanda, High spin band structures in doubly odd 194Tl, Phys. Rev. C 85(6), 064313 (2012)

    Article  ADS  Google Scholar 

  65. R. Bengtsson and S. Frauendorf, Quasiparticle spectra near the yrast line, Nucl. Phys. A 327(1), 139 (1979)

    Article  ADS  Google Scholar 

  66. T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, and D. R. LaFosse, Systematic search of πh11/2 vh11/2 chiral doublet bands and role of triaxiality in odd–odd Z = 55 isotopes: 128,130,132,134CS, Phys. Rev. C 67(4), 044319 (2003)

    Article  ADS  Google Scholar 

  67. S. Zhu, U. Garg, B. K. Nayak, S. S. Ghugre, N. S. Pattabiraman, D. B. Fossan, T. Koike, K. Starosta, C. Vaman, R. V. F. Janssens, R. S. Chakrawarthy, M. Whitehead, A. O. Macchiavelli, and S. Frauendorf, A composite chiral pair of rotational bands in the odd-A nucleus 135Nd, Phys. Rev. Lett. 91(13), 132501 (2003)

    Article  ADS  Google Scholar 

  68. T. Bengtsson and I. Ragnarsson, Rotational bands and particle-hole excitations at very high spin, Nucl. Phys. A 436(1), 14 (1985)

    Article  ADS  Google Scholar 

  69. W. Reviol, M. P. Carpenter, U. Garg, R. V. F. Janssens, I. Ahmad, I. G. Bearden, P. Benet, P. J. Daly, M. W. Drigert, P. B. Fernandez, T. L. Khoo, E. F. Moore, S. Pilotte, and D. Ye, Shape-driving effects in 193 Tl from the spectroscopy of yrast and near-yrast states, Nucl. Phys. A 548(2), 331 (1992)

    Article  ADS  Google Scholar 

  70. C. M. Petrache, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. de Angelis, M. de Poli, D. Bucurescu, C. A. Ur, P. B. Semmes, and R. Wyss, Rotational bands in the doubly odd nucleus 134Pr, Nucl. Phys. A 597(1), 106 (1996)

    Article  ADS  Google Scholar 

  71. A. J. Kreiner, M. Fenzl, S. Lunardi, and M. A. Mariscotti, Rotational structures in doubly odd 198Tl, Nucl. Phys. A 282(2), 243 (1977)

    Article  ADS  Google Scholar 

  72. P. Joshi, M. P. Carpenter, D. B. Fossan, T. Koike, E. S. Paul, G. Rainovski, K. Starosta, C. Vaman, and R. Wadsworth, Effect of γ softness on the stability of chiral geometry: Spectroscopy of 106Ag, Phys. Rev. Lett. 98(10), 102501 (2007)

    Article  ADS  Google Scholar 

  73. D. Jerrestam, W. Klamra, J. Gizon, F. Lidén, L. Hildingsson, J. Kownacki, Th. Lindblad, and J. Nyberg, Collective bands in 106 Ag and 107Ag, Nucl. Phys. A 577(3–4), 786 (1994)

    Article  ADS  Google Scholar 

  74. H. L. Ma, S. H. Yao, B. G. Dong, X. G. Wu, H. Q. Zhang, and X. Z. Zhang, Risk of misinterpreting nearly degenerate doublet bands as chiral partners in odd–even 103105107Ag and odd–odd 106Ag, Phys. Rev. C 88(3), 034322 (2013)

    Article  ADS  Google Scholar 

  75. J. Peng, H. Sagawa, S. Q. Zhang, J. M. Yao, Y. Zhang, and J. Meng, Search for multiple chiral doublets in rhodium isotopes, Phys. Rev. C 77(2), 024309 (2008)

    Article  ADS  Google Scholar 

  76. J. M. Yao, B. Qi, S. Q. Zhang, J. Peng, S. Y. Wang, and J. Meng, Candidate multiple chiral doublets nucleus 106 Rh in a triaxial relativistic mean-field approach with time-odd fields, Phys. Rev. C 79(6), 067302 (2009)

    Article  ADS  Google Scholar 

  77. J. Li, S. Q. Zhang, and J. Meng, Multiple chiral doublet candidate nucleus 105Rh in a relativistic mean-field approach, Phys. Rev. C 83(3), 037301 (2011)

    Article  ADS  Google Scholar 

  78. A. D. Ayangeakaa, U. Garg, M. D. Anthony, S. Frauendorf, J. T. Matta, B. K. Nayak, D. Patel, Q. B. Chen, S. Q. Zhang, P. W. Zhao, B. Qi, J. Meng, R. V. F. Janssens, M. P. Carpenter, C. J. Chiara, F. G. Kondev, T. Lauritsen, D. Seweryniak, S. Zhu, S. S. Ghugre, and R. Palit, Evidence for multiple chiral doublet bands in 133Ce, Phys. Rev. Lett. 110(17), 172504 (2013)

    Article  ADS  Google Scholar 

  79. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010)

    Article  ADS  Google Scholar 

  80. A. I. Levon, J. de Boer, A. A. Pasternak, and D. A. Volkov, M1-transitions and the mutual orientation of the unpaired nucleons in odd–odd nuclei, Z. Phys. A 343(2), 131 (1992)

    Article  ADS  Google Scholar 

  81. N. Rather, P. Datta, S. Chattopadhyay, S. Rajbanshi, A. Goswami, G. H. Bhat, J. A. Sheikh, S. Roy, R. Palit, S. Pal, S. Saha, J. Sethi, S. Biswas, P. Singh, and H. C. Jain, Exploring the origin of nearly degenerate doublet bands in 106Ag, Phys. Rev. Lett. 112(20), 202503 (2014)

    Article  ADS  Google Scholar 

  82. P. A. Butler and W. Nazarewicz, Intrinsic reflection asymmetry in atomic nuclei, Rev. Mod. Phys. 68(2), 349 (1996)

    Article  ADS  Google Scholar 

  83. B. Ackermann, H. Baltzer, C. Ensel, K. Freitag, V. Grafen, C. Günther, P. Herzog, J. Manns, M. Marten-Tölle, U. Müller, J. Prinz, I. Romanski, R. Tölle, J. deBoer, N. Gollwitzer, and H. J. Maier, Collective E1 transitions in even-A Ra, Th, and U nuclei, Nucl. Phys. A 559(1), 61 (1993)

    Article  ADS  Google Scholar 

  84. P. Mason, G. Benzoni, A. Bracco, F. Camera, B. Million, O. Wieland, S. Leoni, A. K. Singh, A. Al-Khatib, H. Hübel, P. Bringel, A. Bürger, A. Neusser, G. Schönwasser, B. M. Nyakó, J. Timár, A. Algora, Z. Dombrádi, J. Gál, G. Kalinka, J. Molnár, D. Sohler, L. Zolnai, K. Juhász, G. B. Hagemann, C. R. Hansen, B. Herskind, G. Sletten, M. Kmiecik, A. Maj, J. Styczen, K. Zuber, F. Azaiez, K. Hauschild, A. Korichi, A. Lopez-Martens, J. Roccaz, S. Siem, F. Hannachi, J. N. Scheurer, P. Bednarczyk, T. Byrski, D. Curien, O. Dorvaux, G. Duchêne, B. Gall, F. Khalfallah, I. Piqueras, J. Robin, S. B. Patel, O. A. Evans, G. Rainovski, C. M. Petrache, D. Petrache, G. L. Rana, R. Moro, G. D. Angelis, P. Falon, I. Y. Lee, J. C. Lisle, B. Cederwall, K. Lagergen, R. M. Lieder, E. Podsvirova, W. Gast, H. Jäger, N. Redon, and A. Görgen, Evidence for octupole correlations in 124125Ba, Phys. Rev. C 72(6), 064315 (2005)

    Article  ADS  Google Scholar 

  85. Y. Y. Wang, S. Q. Zhang, P. W. Zhao, and J. Meng, Multiple chiral doublet bands with octupole correlations in reflection-asymmetric triaxial particle rotor model, Phys. Lett. B 792, 454 (2019)

    Article  ADS  Google Scholar 

  86. K. T. Hecht and A. Adler, Generalized seniority for favored J ≠ 0 pairs in mixed configurations, Nucl. Phys. A 137(1), 129 (1969)

    Article  ADS  Google Scholar 

  87. A. Arima, M. Harvey, and K. Shimizu, Pseudo LS coupling and pseudo SU(3) coupling schemes, Phys. Lett. B 30(8), 517 (1969)

    Article  ADS  Google Scholar 

  88. H. Jia, B. Qi, C. Liu, and S. Y. Wang, Coexistence of chiral symmetry and pseudospin symmetry in one nucleus: Triplet bands in 105Ag, J. Phys. G 46(3), 035102 (2019)

    Article  ADS  Google Scholar 

  89. S. Guo, C. M. Petrache, D. Mengoni, Y. H. Qiang, Y. P. Wang, Y. Y. Wang, J. Meng, Y. K. Wang, S. Q. Zhang, P. W. Zhao, A. Astier, J. G. Wang, H. L. Fan, E. Dupont, B. F. Lv, D. Bazzacco, A. Boso, A. Goasduff, F. Recchia, D. Testov, F. Galtarossa, G. Jaworski, D. R. Napoli, S. Riccetto, M. Siciliano, J. J. Valiente-Dobon, M. L. Liu, G. S. Li, X. H. Zhou, Y. H. Zhang, C. Andreoiu, F. H. Garcia, K. Ortner, K. Whitmore, A. Ataç-Nyberg, T. Bäck, B. Cederwall, E. A. Lawrie, I. Kuti, D. Sohler, T. Marchlewski, J. Srebrny, and A. Tucholski, Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations, Phys. Lett. B 807, 135572 (2020)

    Article  Google Scholar 

  90. H. Liang, J. Meng, and S. G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei, Phys. Rep. 570, 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Q. Xu, S. J. Zhu, J. H. Hamilton, A. V. Ramayya, J. K. Hwang, B. Qi, J. Meng, J. Peng, Y. X. Luo, J. O. Rasmussen, I. Y. Lee, S. H. Liu, K. Li, J. G. Wang, H. B. Ding, L. Gu, E. Y. Yeoh, and W. C. Ma, Identification of pseudospin partner bands in 108Tc, Phys. Rev. C 78(6), 064301 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the numerous members of the iThemba LABS technical staff and accelerator group for their support. This work was supported by the National Research Foundation of South Africa under Grant Nos. 65268, 65581, 75248, 75357, 76632, 80977, 88646, 90741, 91446, 92791, 92792, 93531, 103478, 109134 and 116666, the Outstanding Youth Fund of the Natural Science Foundation of Shandong Province (No. ZR2020YQ07), and the National Natural Science Foundation of China (Nos. U2167202, 12075137, 12075138, and 12225504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Bark.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bark, R.A., Lawrie, E.A., Liu, C. et al. Investigations of nuclear chirality at iThemba LABS. Front. Phys. 19, 24302 (2024). https://doi.org/10.1007/s11467-023-1340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1340-0

Keywords

Navigation