Skip to main content
Log in

A semiclassical perspective on nuclear chirality

  • View & Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The application of the semiclassical description to a particle-core system with imbued chiral symmetry is presented. The classical features of the chiral geometry in atomic nuclei and the associated dynamics are investigated for various core deformations and single-particle alignments. Distinct dynamical characteristics are identified in specific angular momentum ranges, triaxiality and alignment conditions. Quantum observables will be extracted from the classical picture for a quantitative description of experimental data provided as numerical examples of the model’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Frauendorf and J. Meng, Tilted rotation of triaxial nuclei, Nucl. Phys. A 617(2), 131 (1997)

    Article  ADS  Google Scholar 

  2. S. Frauendorf, Spontaneous symmetry breaking in rotating nuclei, Rev. Mod. Phys. 73(2), 463 (2001)

    Article  ADS  Google Scholar 

  3. K. Starosta, T. Koike, C. J. Chiara, D. B. Fossan, D. R. LaFosse, A. A. Hecht, C. W. Beausang, M. A. Caprio, J. R. Cooper, R. Krücken, J. R. Novak, N. V. Zamfir, K. E. Zyromski, D. J. Hartley, D. L. Balabanski, J. Zhang, S. Frauendorf, and V. I. Dimitrov, Chiral doublet structures in odd–odd N = 75 isotones: Chiral vibrations, Phys. Rev. Lett. 86(6), 971 (2001)

    Article  ADS  Google Scholar 

  4. J. Meng and S. Q. Zhang, Open problems in understanding the nuclear chirality, J. Phys. G 37(6), 064025 (2010)

    Article  ADS  Google Scholar 

  5. J. Meng, Q. B. Chen, and S. Q. Zhang, Chirality in atomic nuclei: 2013, Int. J. Mod. Phys. E 23(11), 1430016 (2014)

    Article  ADS  Google Scholar 

  6. R. A. Bark, E. O. Lieder, R. M. Lieder, E. A. Lawrie, J. J. Lawrie, S. P. Bvumbi, N. Y. Kheswa, S. S. Ntshangase, T. E. Madiba, P. L. Masiteng, S. M. Mullins, S. Murray, P. Papka, O. Shirinda, Q. B. Chen, S. Q. Zhang, Z. H. Zhang, P. W. Zhao, C. Xu, J. Meng, D. G. Roux, Z. P. Li, J. Peng, B. Qi, S. Y. Wang, and Z. G. Xiao, Studies of chirality in the mass 80, 100 and 190 regions, Int. J. Mod. Phys. E 23(7), 1461001 (2014)

    Article  ADS  Google Scholar 

  7. A. A. Raduta, Specific features and symmetries for magnetic and chiral bands in nuclei, Prog. Part. Nucl. Phys. 90, 241 (2016)

    Article  ADS  Google Scholar 

  8. K. Starosta and T. Koike, Nuclear chirality, a model and the data, Phys. Scr. 92(9), 093002 (2017)

    Article  ADS  Google Scholar 

  9. B. W. Xiong and Y. Y. Wang, Nuclear chiral doublet bands data tables, At. Data Nucl. Data Tables 125, 193 (2019)

    Article  ADS  Google Scholar 

  10. S. Y. Wang, Recent progress in multiple chiral doublet bands, Chin. Phys. C 44(11), 112001 (2020)

    Article  ADS  Google Scholar 

  11. J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Possible existence of multiple chiral doublets in 106Rh, Phys. Rev. C 73(3), 037303 (2006)

    Article  ADS  Google Scholar 

  12. B. F. Lv, C. M. Petrache, A. Astier, E. Dupont, A. Lopez-Martens, P. T. Greenlees, H. Badran, T. Calverley, D. M. Cox, T. Grahn, J. Hilton, R. Julin, S. Juutinen, J. Konki, M. Leino, J. Pakarinen, P. Papadakis, J. Partanen, P. Rahkila, M. Sandzelius, J. Saren, C. Scholey, J. Sorri, S. Stolze, J. Uusitalo, A. Herzán, B. Cederwall, A. Ertoprak, H. Liu, S. Guo, M. L. Liu, Y. H. Qiang, J. G. Wang, X. H. Zhou, I. Kuti, J. Timár, A. Tucholski, J. Srebrny, and C. Andreoiu, Evolution from γ-soft to stable triaxiality in 136Nd as a prerequisite of chirality, Phys. Rev. C 98(4), 044304 (2018)

    Article  ADS  Google Scholar 

  13. S. Guo, C. M. Petrache, D. Mengoni, Y. H. Qiang, Y. P. Wang, Y. Y. Wang, J. Meng, Y. K. Wang, S. Q. Zhang, P. W. Zhao, A. Astier, J. G. Wang, H. L. Fan, E. Dupont, B. F. Lv, D. Bazzacco, A. Boso, A. Goasduff, F. Recchia, D. Testov, F. Galtarossa, G. Jaworski, D. R. Napoli, S. Riccetto, M. Siciliano, J. J. Valiente-Dobon, M. L. Liu, G. S. Li, X. H. Zhou, Y. H. Zhang, C. Andreoiu, F. H. Garcia, K. Ortner, K. Whitmore, A. Ataç-Nyberg, T. Bäck, B. Cederwall, E. A. Lawrie, I. Kuti, D. Sohler, T. Marchlewski, J. Srebrny, and A. Tucholski, Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations, Phys. Lett. B 807, 135572 (2020)

    Article  Google Scholar 

  14. Y. Zhang, B. Qi, and S. Q. Zhang, Critical point symmetry for odd–odd nuclei and collective multiple chiral doublet bands, Sci. China Phys. Mech. Astron. 64(12), 122011 (2021)

    Article  ADS  Google Scholar 

  15. S. Brant, D. Vretenar, and A. Ventura, Interacting boson fermion-fermion model calculation of the πh11/2⊗ vh11/2 doublet bands in 134Pr, Phys. Rev. C 69(1), 017304 (2004)

    Article  ADS  Google Scholar 

  16. D. Tonev, G. de Angelis, P. Petkov, A. Dewald, S. Brant, S. Frauendorf, D. L. Balabanski, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, A. Fitzler, A. Gadea, S. Lenzi, S. Lunardi, N. Marginean, O. Möller, D. R. Napoli, A. Paleni, C. M. Petrache, G. Prete, K. O. Zell, Y. H. Zhang, J. Zhang, Q. Zhong, and D. Curien, Transition probabilities in 134Pr: A test for chirality in nuclear systems, Phys. Rev. Lett. 96(5), 052501 (2006)

    Article  ADS  Google Scholar 

  17. D. Tonev, G. Angelis, S. Brant, S. Frauendorf, P. Petkov, A. Dewald, F. Dönau, D. L. Balabanski, Q. Zhong, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, D. Curien, F. D. Vedova, A. Fitzler, A. Gadea, G. L. Bianco, S. Lenzi, S. Lunardi, N. Marginean, O. Möller, D. R. Napoli, R. Orlandi, E. Sahin, A. Saltarelli, J. V. Dobon, K. O. Zell, J. Zhang, and Y. H. Zhang, Question of dynamic chirality in nuclei: The case of 134Pr, Phys. Rev. C 76(4), 044313 (2007)

    Article  ADS  Google Scholar 

  18. H. G. Ganev, A. I. Georgieva, S. Brant, and A. Ventura, New description of the doublet bands in doubly odd nuclei, Phys. Rev. C 79(4), 044322 (2009)

    Article  ADS  Google Scholar 

  19. B. Qi, S. Q. Zhang, J. Meng, S. Y. Wang, and S. Frauendorf, Chirality in odd-A nucleus 135Nd in particle rotor model, Phys. Lett. B 675(2), 175 (2009)

    Article  ADS  Google Scholar 

  20. I. Hamamoto, Possible presence and properties of multichiral-pair bands in odd–odd nuclei with the same intrinsic configuration, Phys. Rev. C 88(2), 024327 (2013)

    Article  ADS  Google Scholar 

  21. A. A. Raduta, C. M. Raduta, and A. Faessler, A new picture for the chiral symmetry properties within a particle-core framework, J. Phys. G 41(3), 035105 (2014)

    Article  ADS  Google Scholar 

  22. Y. Y. Wang, S. Q. Zhang, P. W. Zhao, and J. Meng, Multiple chiral doublet bands with octupole correlations in reflection-asymmetric triaxial particle rotor model, Phys. Lett. B 792, 454 (2019)

    Article  ADS  Google Scholar 

  23. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2, Benjamin, Reading, Massachusetts, 1975

    MATH  Google Scholar 

  24. G. H. Bhat, J. A. Sheikh, and R. Palit, Triaxial projected shell model study of chiral rotation in odd–odd nuclei, Phys. Lett. B 707(2), 250 (2012)

    Article  ADS  Google Scholar 

  25. G. H. Bhat, R. N. Ali, J. A. Sheikh, and R. Palit, Investigation of doublet-bands in 124126130132Cs odd–odd nuclei using triaxial projected shell model approach, Nucl. Phys. A 922, 150 (2014)

    Article  ADS  Google Scholar 

  26. F. Q. Chen, Q. B. Chen, Y. A. Luo, J. Meng, and S. Q. Zhang, Chiral geometry in symmetry-restored states: Chiral doublet bands in 128Cs, Phys. Rev. C 96(5), 051303 (2017)

    Article  ADS  Google Scholar 

  27. F. Q. Chen, J. Meng, and S. Q. Zhang, Chiral geometry and rotational structure for 130Cs in the projected shell model, Phys. Lett. B 785, 211 (2018)

    Article  ADS  Google Scholar 

  28. M. Shimada, Y. Fujioka, S. Tagami, and Y. R. Shimizu, Rotational motion of triaxially deformed nuclei studied by the microscopic angular-momentum-projection method. II. Chiral doublet band, Phys. Rev. C 97(2), 024319 (2018)

    Article  ADS  Google Scholar 

  29. Y. K. Wang, F. Q. Chen, P. W. Zhao, S. Q. Zhang, and J. Meng, Multichiral facets in symmetry restored states: Five chiral doublet candidates in the even–even nucleus 136Nd, Phys. Rev. C 99(5), 054303 (2019)

    Article  ADS  Google Scholar 

  30. S. Mukhopadhyay, D. Almehed, U. Garg, S. Frauendorf, T. Li, P. V. M. Rao, X. Wang, S. S. Ghugre, M. P. Carpenter, S. Gros, A. Hecht, R. V. F. Janssens, F. G. Kondev, T. Lauritsen, D. Seweryniak, and S. Zhu, From chiral vibration to static chirality in 135Nd, Phys. Rev. Lett. 99(17), 172501 (2007)

    Article  ADS  Google Scholar 

  31. D. Almehed, F. Dönau, and S. Frauendorf, Chiral vibrations in the A = 135 region, Phys. Rev. C 83(5), 054308 (2011)

    Article  ADS  Google Scholar 

  32. J. Meng and P. Zhao, Nuclear chiral and magnetic rotation in covariant density functional theory, Phys. Scr. 91(5), 053008 (2016)

    Article  ADS  Google Scholar 

  33. P. W. Zhao, Multiple chirality in nuclear rotation: A microscopic view, Phys. Lett. B 773, 1 (2017)

    Article  ADS  Google Scholar 

  34. Z. X. Ren, P. W. Zhao, and J. Meng, Dynamics of rotation in chiral nuclei, Phys. Rev. C 105(1), L011301 (2022)

    Article  ADS  Google Scholar 

  35. Q. B. Chen, S. Q. Zhang, P. W. Zhao, R. V. Jolos, and J. Meng, Collective Hamiltonian for chiral modes, Phys. Rev. C 87(2), 024314 (2013)

    Article  ADS  Google Scholar 

  36. Q. B. Chen, S. Q. Zhang, P. W. Zhao, R. V. Jolos, and J. Meng, Two-dimensional collective Hamiltonian for chiral and wobbling modes, Phys. Rev. C 94(4), 044301 (2016)

    Article  ADS  Google Scholar 

  37. X. H. Wu, Q. B. Chen, P. W. Zhao, S. Q. Zhang, and J. Meng, Two-dimensional collective Hamiltonian for chiral and wobbling modes. II. Electromagnetic transitions, Phys. Rev. C 98(6), 064302 (2018)

    Article  ADS  Google Scholar 

  38. R. Budaca, Semiclassical description of chiral geometry in triaxial nuclei, Phys. Rev. C 98(1), 014303 (2018)

    Article  ADS  Google Scholar 

  39. R. Budaca, Role of triaxiality in the structure of chiral partner bands, Phys. Lett. B 797, 134853 (2019)

    Article  MATH  Google Scholar 

  40. R. Budaca, From chiral vibration to tilted-axis wobbling within broken chiral symmetry, Phys. Lett. B 817, 136308 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. C. M. Raduta, A. A. Raduta, R. Poenaru, and Al. H. Raduta, Simultaneous description of wobbling and chiral properties in even–odd triaxial nuclei, J. Phys. G 49, 025105 (2022)

    ADS  Google Scholar 

  42. J. Frauendiener, Quadratic hamiltonians on the unit sphere, Mech. Res. Commun. 22(4), 313 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Lanchares, M. Inarrea, J. P. Salas, J. D. Sierra, and A. Elipe, Surfaces of bifurcation in a triparametric quadratic Hamiltonian, Phys. Rev. E 52(5), 5540 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Iida and M. Yamamura, Utility of the elliptic function for classical SU(2)-models of nuclear collective motions, Prog. Theor. Phys. 70(3), 783 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A. Gheorghe, A. A. Raduta, and V. Ceausescu, Semiclassical treatment of the cranked triaxial rotator, Nucl. Phys. A 637(2), 201 (1998)

    Article  ADS  Google Scholar 

  46. A. A. Raduta, R. Budaca, and C. M. Raduta, Semiclassical description of a triaxial rigid rotor, Phys. Rev. C 76(6), 064309 (2007)

    Article  ADS  Google Scholar 

  47. O. von Roos, Position-dependent effective masses in semiconductor theory, Phys. Rev. B 27(12), 7547 (1983)

    Article  ADS  Google Scholar 

  48. Q. B. Chen, S. Q. Zhang, P. W. Zhao, and J. Meng, Collective Hamiltonian for wobbling modes, Phys. Rev. C 90(4), 044306 (2014)

    Article  ADS  Google Scholar 

  49. Q. B. Chen, S. Q. Zhang, and J. Meng, Wobbling motion in 135Pr within a collective Hamiltonian, Phys. Rev. C 94(5), 054308 (2016)

    Article  ADS  Google Scholar 

  50. Q. B. Chen, K. Starosta, and T. Koike, Three-level mixing model for nuclear chiral rotation: Role of the planar component, Phys. Rev. C 97, 041303(R) (2018)

    Article  ADS  Google Scholar 

  51. K. Starosta, T. Koike, C. J. Chiara, D. B. Fossan, and D. R. LaFosse, Chirality in odd–odd triaxial nuclei, Nucl. Phys. A. 682(1–4), 375 (2001)

    Article  ADS  Google Scholar 

  52. J. Timár, K. Starosta, I. Kuti, D. Sohler, D. B. Fossan, T. Koike, E. S. Paul, A. J. Boston, H. J. Chantler, M. Descovich, R. M. Clark, M. Cromaz, P. Fallon, I. Y. Lee, A. O. Macchiavelli, C. J. Chiara, R. Wadsworth, A. A. Hecht, D. Almehed, and S. Frauendorf, Medium- and high-spin band structure of the chiral-candidate nucleus 134Pr, Phys. Rev. C 84(4), 044302 (2011)

    Article  ADS  Google Scholar 

  53. K. Y. Ma, J. B. Lu, Z. Zhang, J. Q. Liu, D. Yang, Y. M. Liu, X. Xu, X. Y. Li, Y. Z. Liu, X. G. Wu, Y. Zheng, and C. B. Li, Candidate chiral doublet bands in 138Pm, Phys. Rev. C 97(1), 014305 (2018)

    Article  ADS  Google Scholar 

  54. C. M. Petrache, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. de Angelis, M. De Poli, D. Bucurescu, C. A. Ur, P. B. Semmes, and R. Wyss, Rotational bands in the doubly odd nucleus 134Pr, Nucl. Phys. A 597(1), 106 (1996)

    Article  ADS  Google Scholar 

  55. K. Starosta, C. J. Chiara, D. B. Fossan, T. Koike, T. T. S. Kuo, D. R. LaFosse, S. G. Rohozinski, Ch. Droste, T. Morek, and J. Srebrny, Role of chirality in angular momentum coupling for A ∼ 130 odd–odd triaxial nuclei: 132La, Phys. Rev. C 65(4), 044328 (2002)

    Article  ADS  Google Scholar 

  56. P. Siwach, P. Arumugam, L. S. Ferreira, and E. Maglione, Chirality in 136,138Pm, Phys. Lett. B 811, 135937 (2020)

    Article  Google Scholar 

  57. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, Nuclear ground-state masses and deformations: FRDM(2012), At. Data Nucl. Data Tables 109–110, 1 (2016)

    Article  ADS  Google Scholar 

  58. R. Budaca, Tilted-axis wobbling in odd-mass nuclei, Phys. Rev. C 97(2), 024302 (2018)

    Article  ADS  Google Scholar 

  59. R. Budaca, Reconciliation of wobbling motion with rotational alignment in odd mass nuclei, Phys. Rev. C 103(4), 044312 (2021)

    Article  ADS  Google Scholar 

  60. B. F. Lv, C. M. Petrache, R. Budaca, A. Astier, K. K. Zheng, P. Greenlees, H. Badran, T. Calverley, D. M. Cox, T. Grahn, J. Hilton, R. Julin, S. Juutinen, J. Konki, J. Pakarinen, P. Papadakis, J. Partanen, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Saren, C. Scholey, J. Sorri, S. Stolze, J. Uusitalo, B. Cederwall, A. Ertoprak, H. Liu, S. Guo, J. G. Wang, H. J. Ong, X. H. Zhou, Z. Y. Sun, I. Kuti, J. Timár, A. Tucholski, J. Srebrny, and C. Andreoiu, Experimental evidence for transverse wobbling bands in 136Nd, Phys. Rev. C 105(3), 034302 (2022)

    Article  ADS  Google Scholar 

  61. R. Budaca and C. M. Petrache, Beyond the harmonic approximation description of wobbling excitations in even–even nuclei with frozen alignments, Phys. Rev. C 106(1), 014313 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitalization, CNCS - UEFIS-CDI, project number PN-III-P1-1.1-TE-2021-0109, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Budaca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budaca, R. A semiclassical perspective on nuclear chirality. Front. Phys. 19, 24301 (2024). https://doi.org/10.1007/s11467-023-1339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1339-6

Keywords

Navigation