Skip to main content
Log in

Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden–Popper phase halide perovskites

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The effective modulation of the thermal conductivity of halide perovskites is of great importance in optimizing their optoelectronic device performance. Based on first-principles lattice dynamics calculations, we found that alloying at the B and X sites can significantly modulate the thermal transport properties of 2D Ruddlesden–Popper (RP) phase halide perovskites, achieving a range of lattice thermal conductivity values from the lowest (κc = 0.05 W·m−1·K−1@Cs4AgBiI8) to the highest (κa/b = 0.95 W·m−1·K−1@Cs4NaBiCl4I4). Compared with the pure RP-phase halide perovskites and three-dimensional halide perovskite alloys, the two-dimensional halide perovskite introduces more phonon branches through alloying, resulting in stronger phonon branch coupling, which effectively scatters phonons and reduces thermal conductivity. Alloying can also dramatically regulate the thermal transport anisotropy of RP-phase halide perovskites, with the anisotropy ratio ranging from 1.22 to 4.13. Subsequently, analysis of the phonon transport modes in these structures revealed that the lower phonon velocity and shorter phonon lifetime were the main reasons for their low thermal conductivity. This work further reduces the lattice thermal conductivity of 2D pure RP-phase halide perovskites by alloying methods and provides a strong support for theoretical guidance by gaining insight into the interesting phonon transport phenomena in these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

The data that support the fndings of this study are available from the corresponding author, upon reasonable request.

References

  1. H. Park, C. Ha, and J. H. Lee, Advances in piezoelectric halide perovskites for energy harvesting applications, J. Mater. Chem. A 8(46), 24353 (2020)

    Article  Google Scholar 

  2. L. Zhang, J. Jiang, C. Multunas, C. Ming, Z. Chen, Y. Hu, Z. Lu, S. Pendse, R. Jia, M. Chandra, Y. Sun, T. Lu, Y. Ping, R. Sundararaman, and J. Shi, Room-temperature electrically switchable spin–valley coupling in a van Der Waals ferroelectric halide perovskite with persistent spin helix, Nat. Photonics 16(7), 529 (2022)

    Article  ADS  Google Scholar 

  3. D. Zhang, Q. Zhang, Y. Zhu, S. Poddar, Y. Zhang, L. Gu, H. Zeng, and Z. Fan, Metal halide perovskite nanowires: Synthesis, integration, properties, and applications in optoelectronics, Adv. Energy Mater. 2022, 2201735 (2022)

    Article  Google Scholar 

  4. T. Haeger, R. Heiderhoff, and T. Riedl, Thermal properties of metal-halide perovskites, J. Mater. Chem. C 8(41), 14289 (2020)

    Article  Google Scholar 

  5. Y. Li, G. Na, S. Luo, X. He, and L. Zhang, Structural, thermodynamical and electronic properties of all-inorganic lead halide perovskites, Acta Phys. -Chim. Sin. 37(4), 2007015 (2020)

    Article  Google Scholar 

  6. W. Feng, R. Zhao, X. Wang, B. Xing, Y. Zhang, X. He, and L. Zhang, Global instability index as a crystallographic stability descriptor of halide and chalcogenide perovskites, J. Energy Chem. 70, 1 (2022)

    Article  Google Scholar 

  7. N. Jiang, B. Xing, Y. Wang, H. Zhang, D. Yin, Y. Liu, Y. Bi, L. Zhang, J. Feng, and H. Sun, Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method, Sci. Bull. (Beijing) 67(8), 794 (2022)

    Article  ADS  Google Scholar 

  8. W. Lee, H. Li, A. B. Wong, D. Zhang, M. Lai, Y. Yu, Q. Kong, E. Lin, J. J. Urban, J. C. Grossman, and P. Yang, Ultralow thermal conductivity in all-inorganic halide perovskites, Proc. Natl. Acad. Sci. USA 114(33), 8693 (2017)

    Article  ADS  Google Scholar 

  9. E. Haque and M. A. Hossain, Electronic, phonon transport and thermoelectric properties of Cs2InAgCl6 from first-principles study, Comput. Condens. Matter 19, e00374 (2019)

    Article  Google Scholar 

  10. M. Fallah and H. M. Moghaddam, Ultra-low lattice thermal conductivity and high thermoelectric efficiency in Cs2SnX6 (X=Br, I): A DFT study, Mater. Sci. Semicond. Process. 133, 105984 (2021)

    Article  Google Scholar 

  11. Y. Cai, M. Faizan, X. Shen, A. M. Mebed, T. A. Alrebdi, and X. He, NaBeAs and NaBeSb: Novel ternary pnictides with enhanced thermoelectric performance, J. Phys. Chem. C 127(4), 1733 (2023)

    Article  Google Scholar 

  12. F. Qian, M. Hu, J. Gong, C. Ge, Y. Zhou, J. Guo, M. Chen, Z. Ge, N. P. Padture, Y. Zhou, and J. Feng, Enhanced thermoelectric performance in lead-free inorganic CsSn1-xGexI3 perovskite semiconductors, J. Phys. Chem. C 124(22), 11749 (2020)

    Article  Google Scholar 

  13. Q. Mahmood, M. Hassan, N. Yousaf, A. A. AlObaid, T. I. Al-Muhimeed, M. Morsi, H. Albalawi, and O. A. Alamri, Study of lead-free double perovskites halides Cs2TiCl6, and Cs2TiBr6 for optoelectronics, and thermoelectric applications, Mater. Sci. Semicond. Process. 137, 106180 (2022)

    Article  Google Scholar 

  14. Y. X. Chen, W. Qin, A. Mansoor, A. Abbas, F. Li, G. Liang, P. Fan, M. U. Muzaffar, B. Jabar, Z. Ge, and Z. Zheng, Realizing high thermoelectric performance via selective resonant doping in oxyselenide BiCuSeO, Nano Res. 16(1), 1679 (2023)

    Article  ADS  Google Scholar 

  15. X. Lin, X. Dai, Z. Ye, Y. Shu, Z. Song, and X. Peng, Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots, Nano Res. 15(10), 9402 (2022)

    Article  ADS  Google Scholar 

  16. Z. Zhu, J. Tiwari, T. Feng, Z. Shi, Y. Lou, and B. Xu, High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in N-type PbS, Nano Res. 15(5), 4739 (2022)

    Article  ADS  Google Scholar 

  17. S. Kawano, T. Tadano, and S. Iikubo, Effect of Halogen ions on the low thermal conductivity of cesium halide perovskite, J. Phys. Chem. C 125(1), 91 (2021)

    Article  Google Scholar 

  18. M. Sajjad, Q. Mahmood, N. Singh, and J. A. Larsson, Ultralow lattice thermal conductivity in double perovskite Cs2PtI6: A promising thermoelectric material, ACS Appl. Energy Mater. 3(11), 11293 (2020)

    Article  Google Scholar 

  19. S. Ahmad, P. Fu, S. Yu, Q. Yang, X. Liu, X. Wang, X. Wang, X. Guo, and C. Li, Dion–Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability, Joule 3(3), 794 (2019)

    Article  Google Scholar 

  20. R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A. S. Subbiah, J. Liu, G. T. Harrison, M. I. Nugraha, M. K. Eswaran, M. Babics, Y. Chen, F. Xu, T. G. Allen, A. Rehman, C. L. Wang, T. D. Anthopoulos, U. Schwingenschlögl, M. De Bastiani, E. Aydin, and S. De Wolf, Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions, Science 376(6588), 73 (2022)

    Article  ADS  Google Scholar 

  21. Y. Wei, B. Chen, F. Zhang, Y. Tian, X. Yang, B. Cai, and J. Zhao, Compositionally designed 2D Ruddlesden–Popper perovskites for efficient and stable solar cells, Solar RRL 5(4), 2000661 (2021)

    Article  Google Scholar 

  22. G. Zhao, J. Xie, K. Zhou, B. Xing, X. Wang, F. Tian, X. He, and L. Zhang, High-throughput computational material screening of the cycloalkane-based two-dimensional Dion–Jacobson halide perovskites for optoelectronics, Chin. Phys. B 31(3), 037104 (2022)

    Article  ADS  Google Scholar 

  23. P. H. Tan, L. Zhang, L. Dai, and S. Zhou, Preface to the special issue on 2D-materials-related physical properties and optoelectronic devices, J. Semicond. 40(6), 060101 (2019)

    Article  ADS  Google Scholar 

  24. X. Yan, W. Fan, F. Cheng, H. Sun, C. Xu, L. Wang, Z. Kang, and Y. Zhang, Ion migration in hybrid perovskites: Classification, identification, and manipulation, Nano Today 44, 101503 (2022)

    Article  Google Scholar 

  25. A. D. Christodoulides, P. Guo, L. Dai, J. M. Hoffman, X. Li, X. Zuo, D. Rosenmann, A. Brumberg, M. G. Kanatzidis, R. D. Schaller, and J. A. Malen, Signatures of coherent phonon transport in ultralow thermal conductivity two-dimensional Ruddlesden–Popper phase perovskites, ACS Nano 15(3), 4165 (2021)

    Article  Google Scholar 

  26. C. Pipitone, S. Boldrini, A. Ferrario, G. Garcìa-Espejo, A. Guagliardi, N. Masciocchi, A. Martorana, and F. Giannici, Ultralow thermal conductivity in 1D and 2D imidazolium-based lead halide perovskites, Appl. Phys. Lett. 119(10), 101104 (2021)

    Article  ADS  Google Scholar 

  27. S. Thakur, Z. Dai, P. Karna, N. P. Padture, and A. Giri, Tailoring the thermal conductivity of two-dimensional metal halide perovskites, Mater. Horiz. 9(12), 3087 (2022)

    Article  Google Scholar 

  28. C. Li, H. Ma, T. Li, J. Dai, M. A. J. Rasel, A. Mattoni, A. Alatas, M. G. Thomas, Z. W. Rouse, A. Shragai, S. P. Baker, B. Ramshaw, J. P. Feser, D. B. Mitzi, and Z. Tian, Remarkably weak anisotropy in thermal conductivity of two-dimensional hybrid perovskite butylammonium lead iodide crystals, Nano Lett. 21(9), 3708 (2021)

    Article  ADS  Google Scholar 

  29. C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I), J. Phys. Chem. C 122(28), 15973 (2018)

    Article  Google Scholar 

  30. G. A. Elbaz, W. L. Ong, E. A. Doud, P. Kim, D. W. Paley, X. Roy, and J. A. Malen, Phonon speed, not scattering, differentiates thermal transport in lead halide perovskites, Nano Lett. 17(9), 5734 (2017)

    Article  ADS  Google Scholar 

  31. P. Acharyya, T. Ghosh, K. Pal, K. Kundu, K. Singh Rana, J. Pandey, A. Soni, U. V. Waghmare, and K. Biswas, Intrinsically ultralow thermal conductivity in Ruddlesden–Popper 2D perovskite Cs2PbI2Cl2: Localized anharmonic vibrations and dynamic octahedral distortions, J. Am. Chem. Soc. 142(36), 15595 (2020)

    Article  Google Scholar 

  32. J. Tang, C. Qin, H. Yu, Z. Zeng, L. Cheng, B. Ge, Y. Chen, W. Li, and Y. Pei, Ultralow lattice thermal conductivity enables high thermoelectric performance in BaAg2Te2 alloys, Mater. Today Phys. 22, 100591 (2022)

    Article  Google Scholar 

  33. T. Parashchuk, R. Knura, O. Cherniushok, and K. T. Wojciechowski, Ultralow lattice thermal conductivity and improved thermoelectric performance in Cl-doped Bi2Te3-xSex alloys, ACS Appl. Mater. Interfaces 14(29), 33567 (2022)

    Article  Google Scholar 

  34. Y. Q. Cao, T. J. Zhu, and X. B. Zhao, Low thermal conductivity and improved figure of merit in fine-grained binary PbTe thermoelectric alloys, J. Phys. D Appl. Phys. 42(1), 015406 (2009)

    Article  ADS  Google Scholar 

  35. X. Wang, M. Faizan, K. Zhou, H. Zou, Q. Xu, Y. Fu, and L. Zhang, Exploration of B-site alloying in partially reducing Pb toxicity and regulating thermodynamic stability and electronic properties of halide perovskites, Sci. China Phys. Mech. Astron. 66(3), 237311 (2023)

    Article  ADS  Google Scholar 

  36. T. J. Slade, T. P. Bailey, J. A. Grovogui, X. Hua, X. Zhang, J. J. Kuo, I. Hadar, G. J. Snyder, C. Wolverton, V. P. Dravid, C. Uher, and M. G. Kanatzidis, High thermoelectric performance in PbSe–NaSbSe2 alloys from valence band convergence and low thermal conductivity, Adv. Energy Mater. 9(30), 1901377 (2019)

    Article  Google Scholar 

  37. Y. Zheng, C. Liu, L. Miao, C. Li, R. Huang, J. Gao, X. Wang, J. Chen, Y. Zhou, and E. Nishibori, Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity, Nano Energy 59, 311 (2019)

    Article  Google Scholar 

  38. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  39. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  40. C. Braga and K. P. Travis, A configurational temperature Nosé–Hoover thermostat, J. Chem. Phys. 123(13), 134101 (2005)

    Article  ADS  Google Scholar 

  41. O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, Temperature dependent effective potential method for accurate free energy calculations of solids, Phys. Rev. B 87(10), 104111 (2013)

    Article  ADS  Google Scholar 

  42. O. Hellman, I. A. Abrikosov, and S. I. Simak, Lattice dynamics of anharmonic solids from first principles, Phys. Rev. B 84(18), 180301 (2011)

    Article  ADS  Google Scholar 

  43. W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Sheng-BTE: A solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun. 185(6), 1747 (2014)

    Article  ADS  MATH  Google Scholar 

  44. D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles, Appl. Phys. Lett. 91(23), 231922 (2007)

    Article  ADS  Google Scholar 

  45. A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer, Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B 80(12), 125203 (2009)

    Article  ADS  Google Scholar 

  46. W. Li, L. Lindsay, D. A. Broido, D. A. Stewart, and N. Mingo, Thermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principles, Phys. Rev. B 86(17), 174307 (2012)

    Article  ADS  Google Scholar 

  47. R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalco-genides, Acta Crystallogr. A 32(5), 751 (1976)

    Article  ADS  Google Scholar 

  48. W. Pu, W. Xiao, J. Wang, X. Li, and L. Wang, Screening of perovskite materials for solar cell applications by first-principles calculations, Mater. Des. 198, 109387 (2021)

    Article  Google Scholar 

  49. I. L. Ivanov, A. S. Steparuk, M. S. Bolyachkina, D. S. Tsvetkov, A. P. Safronov, and A. Yu. Zuev, Thermodynamics of formation of hybrid perovskite-type methylammonium lead halides, J. Chem. Thermodyn. 116, 253 (2018)

    Article  Google Scholar 

  50. K. Komiya, N. Morisaku, R. Rong, Y. Takahashi, Y. Shinzato, H. Yukawa, and M. Morinaga, Synthesis and decomposition of perovskite-type hydrides, MMgH3 (M= Na, K, Rb), J. Alloys Compd. 453(1–2), 157 (2008)

    Article  Google Scholar 

  51. A. Gold-Parker, P. M. Gehring, J. M. Skelton, I. C. Smith, D. Parshall, J. M. Frost, H. I. Karunadasa, A. Walsh, and M. F. Toney, Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide, Proc. Natl. Acad. Sci. USA 115(47), 11905 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402501), the National Natural Science Foundation of China (Grant Nos. 12004131, 62125402, 22090044, and 92061113), and Jilin Province Science and Technology Development Program (Grant No. 20210508044RQ). Calculations were performed in part at the high-performance computing center of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhao Fu or Lijun Zhang.

Additional information

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic Supplementary Material

11467_2023_1315_MOESM1_ESM.pdf

Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden–Popper phase halide perovskites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, H., Zhou, K., Tian, F. et al. Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden–Popper phase halide perovskites. Front. Phys. 18, 63304 (2023). https://doi.org/10.1007/s11467-023-1315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1315-1

Keywords

Navigation