Skip to main content
Log in

Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Breaking up bulk crystals of functional materials into nanoscale thinner layers can lead to interesting properties and enhanced functionalities due to the size and interface effects. However, unlike the van der Waals layered crystals, many materials cannot be exfoliated into thin layers by liquid exfoliation. BiFeO3 is a piezoelectric ceramic material, which is commonly synthesized as bulk crystals, limiting its wider applications. In this contribution, a freeze-drying assisted liquid exfoliation method was adopted to fabricate thin-layered BiFeO3 nanoplates with lateral sizes of up to 500 nm and thicknesses of 10–20 nm. The freeze-drying process showed a vital role in the preparation process by imposing stress on the dispersed BiFeO3 crystals during the liquid-to-solid-to-gas transition of the solvent. Such stress resulted in lattice strains in the freeze-dried BiFeO3 crystals, which enabled their further exfoliation under subsequent ultrasonication. Considering the intrinsic piezoelectric effect of BiFeO3, pressure sensors based on bulk and thin-layer BiFeO3 were also fabricated. The pressure sensor based on BiFeO3 nanoplates exhibited a largely enhanced sensitivity with a wider working range than the bulk counterpart, because of the stronger piezoelectric effect induced and the extra electrical charges at abundant interlayer interfaces. We suggest that the freeze-drying assisted liquid exfoliation method can be applied to other non-van der Waals crystals to bring about more functional material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Tao, K. Zhang, H. Tian, Y. Liu, D. Y. Wang, Y. Q. Chen, Y. Yang, and T. L. Ren, Graphene-paper pressure sensor for detecting human motions, ACS Nano 11(9), 8790 (2017)

    Article  Google Scholar 

  2. L. Guan, A. Nilghaz, B. Su, L. Jiang, W. Cheng, and W. Shen, Stretchable-fiber-confined wetting conductive liquids as wearable human health monitors, Adv. Funct. Mater. 26(25), 4511 (2016)

    Article  Google Scholar 

  3. C. M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran, A. C. Hinckley, R. Pfattner, S. Niu, J. Li, J. Claverie, Z. Wang, J. Chang, P. M. Fox, and Z. Bao, Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow, Nat. Biomed. Eng. 3(1), 47 (2019)

    Article  Google Scholar 

  4. L. Li, J. Zheng, J. Chen, Z. Luo, Y. Su, W. Tang, X. Gao, Y. Li, C. Cao, Q. Liu, X. Kang, L. Wang, and H. Li, Flexible pressure sensors for biomedical applications: From ex vivo to in vivo, Adv. Mater. Inter-faces 7(17), 2000743 (2020)

    Article  Google Scholar 

  5. D. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, Epidermal electronics, Science 333(6044), 838 (2011)

    Article  ADS  Google Scholar 

  6. S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nat. Mater. 9(10), 859 (2010)

    Article  ADS  Google Scholar 

  7. D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes, Nat. Nanotechnol. 6(12), 788 (2011)

    Article  ADS  Google Scholar 

  8. F. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films, Nano Lett. 12(6), 3109 (2012)

    Article  ADS  Google Scholar 

  9. Y. Ding, J. Yang, C. R. Tolle, and Z. Zhu, Flexible and compressible PEDOT: PSS@melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection, ACS Appl. Mater. Interfaces 10(18), 16077 (2018)

    Article  Google Scholar 

  10. X. Shuai, P. Zhu, W. Zeng, Y. Hu, X. Liang, Y. Zhang, R. Sun, and C. Wong, Highly sensitive flexible pressure sensor based on silver nanowires-embedded poly-dimethylsiloxane electrode with microarray structure, ACS Appl. Mater. Interfaces 9(31), 26314 (2017)

    Article  Google Scholar 

  11. K. Maity, S. Garain, K. Henkel, D. Schmeißer, and D. Mandal, Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor, ACS Appl. Polym. Mater. 2(2), 862 (2020)

    Article  Google Scholar 

  12. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Self-powered nanowire devices, Nat. Nanotechnol. 5(5), 366 (2010)

    Article  ADS  Google Scholar 

  13. L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, and Z. L. Wang, Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging, ACS Nano 7(9), 8266 (2013)

    Article  Google Scholar 

  14. T. Huang, S. Yang, P. He, J. Sun, S. Zhang, D. Li, Y. Meng, J. Zhou, H. Tang, J. Liang, G. Ding, and X. Xie, Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors, ACS Appl. Mater. Interfaces 10(36), 30732 (2018)

    Article  Google Scholar 

  15. M. Ha, S. Lim, J. Park, D. S. Um, Y. Lee, and H. Ko, Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins, Adv. Funct. Mater. 25(19), 2841 (2015)

    Article  Google Scholar 

  16. Y. Kim, K. Y. Lee, S. K. Hwang, C. Park, S. W. Kim, and J. Cho, Layer-by-layer controlled perovskite nanocomposite thin films for piezoelectric nanogenerators, Adv. Funct. Mater. 24(40), 6262 (2014)

    Article  Google Scholar 

  17. Y. Qi and M. C. McAlpine, Nanotechnology-enabled flexible and biocompatible energy harvesting, Energy Environ. Sci. 3(9), 1275 (2010)

    Article  Google Scholar 

  18. H. Liu, J. Zhong, C. Lee, S. W. Lee, and L. Lin, A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications, Appl. Phys. Rev. 5(4), 041306 (2018)

    Article  ADS  Google Scholar 

  19. H. G. Yeo, T. Xue, S. Roundy, X. Ma, C. Rahn, and S. Trolier-McKinstry, Strongly (001) oriented bimorph PZT film on metal foils grown by RF -sputtering for wrist-worn piezoelectric energy harvesters, Adv. Funct. Mater. 28(36), 1801327 (2018)

    Article  Google Scholar 

  20. J. Yi, L. Liu, L. Shu, Y. Huang, and J. F. Li, Outstanding ferroelectricity in sol-gel-derived polycrystalline BiFeO3 films within a wide thickness range, ACS Appl. Mater. Interfaces 14(18), 21696 (2022)

    Article  Google Scholar 

  21. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299(5613), 1719 (2003)

    Article  ADS  Google Scholar 

  22. J. Silva, A. Reyes, H. Esparza, H. Camacho, and L. Fuentes, BiFeO3: A review on synthesis, doping and crystal structure, Integr. Ferroelectr. 126(1), 47 (2011)

    Article  ADS  Google Scholar 

  23. M. Dai, Z. Wang, F. Wang, Y. Qiu, J. Zhang, C. Y. Xu, T. Zhai, W. Cao, Y. Fu, D. Jia, Y. Zhou, and P. A. Hu, Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors, Nano Lett. 19(8), 5410 (2019)

    Article  ADS  Google Scholar 

  24. M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. H. Kim, W. J. Kim, D. Do, and I. K. Jeong, High-performance lead-free piezoceramics with high Curie temperatures, Adv. Mater. 27(43), 6976 (2015)

    Article  Google Scholar 

  25. K. Shimizu, H. Hojo, Y. Ikuhara, and M. Azuma, Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films, Adv. Mater. 28(39), 8639 (2016)

    Article  Google Scholar 

  26. K. Shimizu, H. Hojo, Y. Ikuhara, and M. Azuma, Piezoelectric materials: Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films, Adv. Mater. 28(39), 8785 (2016)

    Article  Google Scholar 

  27. P. Hu, L. Yan, C. Zhao, Y. Zhang, and J. Niu, Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property, Compos. Sci. Technol. 168, 327 (2018)

    Article  Google Scholar 

  28. K. N. Duerloo, M. T. Ong, and E. J. Reed, Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)

    Article  Google Scholar 

  29. Liu, G. D. Zhao, T. Hu, L. Bellaiche, and W. Ren, Structural and magnetic properties of two-dimensional layered BiFeO3 from first principles, Phys. Rev. B 103, 081403 (2021)

    ADS  Google Scholar 

  30. H. Yan, H. Deng, N. Ding, J. He, L. Peng, L. Sun, P. Yang, and J. Chu, Influence of transition elements doping on structural, optical and magnetic properties of BiFeO3 films fabricated by magnetron sputtering, Mater. Lett. 111, 123 (2013)

    Article  Google Scholar 

  31. X. Zhang, J. Deng, J. Yan, Y. Song, Z. Mo, J. Qian, X. Wu, S. Yuan, H. Li, and H. Xu, Cryo-mediated liquid-phase exfoliated 2D BP coupled with 2D C3N4 to photodegradate organic pollutants and simultaneously generate hydrogen, Appl. Surf. Sci. 490, 117 (2019)

    Article  ADS  Google Scholar 

  32. H. Wang, W. Lv, J. Shi, H. Wang, D. Wang, L. Jin, J. Chao, P. A. van Aken, R. Chen, and W. Huang, Efficient liquid nitrogen exfoliation of MoS2 ultrathin nanosheets in the pure 2H phase, ACS Sustain. Chem. & Eng. 8(1), 84 (2020)

    Article  Google Scholar 

  33. Y. Wang, Y. Liu, J. Zhang, J. Wu, H. Xu, X. Wen, X. Zhang, C. S. Tiwary, W. Yang, R. Vajtai, Y. Zhang, N. Chopra, I. N. Odeh, Y. Wu, and P. M. Ajayan, Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots, Sci. Adv. 3(12), 1701500 (2017)

    Article  Google Scholar 

  34. M. Abroodi, A. Bagheri, and B. M. Razavizadeh, Surface tension of binary and ternary systems containing monoethanolamine (MEA), water and alcohols (methanol, ethanol, and isopropanol) at 303.15 K, J. Chem. Eng. Data 65(6), 3173 (2020)

    Article  Google Scholar 

  35. S. Cesur, M. E. Cam, F. S. Sayin, and O. Gunduz, Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer’s disease, J. Drug Deliv. Sci. Technol. 67, 102977 (2022)

    Article  Google Scholar 

  36. H. Ding, S. T. Khan, S. Zeng, and L. Sun, Exfoliation of nanosized α-zirconium phosphate in methanol, Inorg. Chem. 60(11), 8276 (2021)

    Article  Google Scholar 

  37. K. Jonnalagadda, S. W. Cho, I. Chasiotis, T. Friedmann, and J. Sullivan, Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS, J. Mech. Phys. Solids 56(2), 388 (2008)

    Article  ADS  Google Scholar 

  38. K. Park, J. H. Son, G. T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang, and K. J. Lee, Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates, Adv. Mater. 26(16), 2514 (2014)

    Article  Google Scholar 

  39. A. Barzegar, D. Damjanovic, and N. Setter, Analytical modeling of the apparent d33 piezoelectric coefficient determined by the direct quasistatic method for different boundary conditions, IEEE Trans. Ultrason. Ferro-electr. Freq. Control 52(11), 1897 (2005)

    Article  Google Scholar 

  40. J. Dong and G. Ouyang, Edge effect on the piezoelectric characteristics of rectangular-shaped monolayer MSe2 (M = Cr, Mo, W) nanosheets, J. Phys. D Appl. Phys. 54(23), 235502 (2021)

    Article  ADS  Google Scholar 

  41. Z. Zhu, A. Zhang, G. Ouyang, and G. Yang, Edge effect on band gap shift in Si nanowires with polygonal cross-sections, Appl. Phys. Lett. 98(26), 263112 (2011)

    Article  ADS  Google Scholar 

  42. J. Dong and G. Ouyang, Edge effect on the piezoelectric characteristics of rectangular-shaped monolayer MSe2 (M = Cr, Mo, W) nanosheets, J. Phys. D: Appl. Phys. 54(23), 235502 (2021)

    Article  ADS  Google Scholar 

  43. Y. Lee, J. Park, S. Cho, Y. E. Shin, H. Lee, J. Kim, J. Myoung, S. Cho, S. Kang, C. Baig, and H. Ko, Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range, ACS Nano 12(4), 4045 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Eo. 51832001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhang or Xiao Huang.

Additional information

Conflicts of interest

There are no conflicts to declare.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dong, M., Zou, X. et al. Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing. Front. Phys. 18, 63303 (2023). https://doi.org/10.1007/s11467-023-1301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1301-7

Keywords

Navigation