Skip to main content
Log in

Influence of the tangential velocity on the compressible Kelvin-Helmholtz instability with nonequilibrium effects

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Kelvin-Helmholtz (KH) instability is a fundamental fluid instability that widely exists in nature and engineering. To better understand the dynamic process of the KH instability, the influence of the tangential velocity on the compressible KH instability is investigated by using the discrete Boltzmann method based on the nonequilibrium statistical physics. Both hydrodynamic and thermodynamic nonequilibrium (TNE) effects are probed and analyzed. It is found that, on the whole, the global density gradients, the TNE strength and area firstly increase and decrease afterwards. Both the global density gradient and heat flux intensity in the vertical direction are almost constant in the initial stage before a vortex forms. Moreover, with the increase of the tangential velocity, the KH instability evolves faster, hence the global density gradients, the TNE strength and area increase in the initial stage and achieve their peak earlier, and their maxima are higher for a larger tangential velocity. Physically, there are several competitive mechanisms in the evolution of the KH instability. (i) The physical gradients increase and the TNE effects are strengthened as the interface is elongated. The local physical gradients decrease and the local TNE intensity is weakened on account of the dissipation and/or diffusion. (ii) The global heat flux intensity is promoted when the physical gradients increase. As the contact area expands, the heat exchange is enhanced and the global heat flux intensity increases. (iii) The global TNE intensity reduces with the decreasing of physical gradients and increase with the increasing of TNE area. (iv) The nonequilibrium area increases as the fluid interface is elongated and is widened because of the dissipation and/or diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London, 1961

    MATH  Google Scholar 

  2. C. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 2000

    Book  Google Scholar 

  3. H. Luce, L. Kantha, M. Yabuki, and H. Hashiguchi, Atmospheric Kelvin-Helmholtz billows captured by the MU radar, lidars and a fish-eye camera, Earth Planets Space 70(1), 162 (2018)

    Article  ADS  Google Scholar 

  4. L. F. Wang, W. H. Ye, X. T. He, J. F. Wu, Z. F. Fan, C. Xue, H. Y. Guo, W. Y. Miao, Y. T. Yuan, J. Q. Dong, G. Jia, J. Zhang, Y. J. Li, J. Liu, M. Wang, Y. K. Ding, and W. Y. Zhang, Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions, Sci. China: Phys. Mech. Astron. 60(5), 055201 (2017)

    ADS  Google Scholar 

  5. R. V. Coelho, M. Mendoza, M. M. Doria, and H. J. Herrmann, Kelvin-Helmholtz instability of the Dirac fluid of charge carriers on graphene, Phys. Rev. B 96(18), 184307 (2017)

    Article  ADS  Google Scholar 

  6. V. V. Mishin and V. M. Tomozov, Kelvin-Helmholtz instability in the solar atmosphere, solar wind and geomagnetosphere, Sol. Phys. 291(11), 3165 (2016)

    Article  ADS  Google Scholar 

  7. A. Petrarolo, M. Kobald, and S. Schlechtriem, Understanding Kelvin-Helmholtz instability in paraffin-based hybrid rocket fuels, Exp. Fluids 59(4), 62 (2018)

    Article  Google Scholar 

  8. R. K. Azadboni, A. Heidari, and J. X. Wen, Numerical studies of flame acceleration and onset of detonation in homogenous and inhomogeneous mixture, J. Loss Prev. Process Ind. 64, 104063 (2020)

    Article  Google Scholar 

  9. X. Y. Zhang, S. P. Li, B. Y. Yang, and N. F. Wang, Flow structures of over-expanded supersonic gaseous jets for deep-water propulsion, Ocean Eng. 213, 107611 (2020)

    Article  Google Scholar 

  10. X. F. Xiao, G. B. Zhao, W. X. Zhou, and S. Martynenko, Large-eddy simulation of transpiration cooling in turbulent channel with porous wall, Appl. Therm. Eng. 145, 618 (2018)

    Article  Google Scholar 

  11. W. Huang, Z. Du, L. Yan, and Z. Xia, Supersonic mixing in airbreathing propulsion systems for hypersonic flights, Prog. Aerosp. Sci. 109, 100545 (2019)

    Article  Google Scholar 

  12. E. C. Harding, J. F. Hansen, O. A. Hurricane, R. P. Drake, H. F. Robey, C. C. Kuranz, B. A. Remington, M. J. Bono, M. J. Grosskopf, and R. S. Gillespie, Observation of a Kelvin-Helmholtz instability in a high-energydensity plasma on the omega laser, Phys. Rev. Lett. 103(4), 045005 (2009)

    Article  ADS  Google Scholar 

  13. M. K. Awasthi, R. Asthana, and G. Agrawal, Viscous correction for the viscous potential flow analysis of Kelvin-Helmholtz instability of cylindrical flow with heat and mass transfer, Int. J. Heat Mass Transf. 78, 251 (2014)

    Article  MATH  Google Scholar 

  14. B. Akula, P. Suchandra, M. Mikhaeil, and D. Ranjan, Dynamics of unstably stratified free shear flows: An experimental investigation of coupled Kelvin-Helmholtz and Rayleigh-Taylor instability, J. Fluid Mech. 816, 619 (2017)

    Article  ADS  Google Scholar 

  15. C. D. Lin, A. G. Xu, G. C. Zhang, Y. J. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. J. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)

    Article  ADS  Google Scholar 

  17. J. P. Parker, C. P. Caulfield, and R. R. Kerswell, The effects of Prandtl number on the nonlinear dynamics of Kelvin-Helmholtz instability in two dimensions, J. Fluid Mech. 915, A37 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. V. Mohan, A. Sameen, B. Srinivasan, and S. S. Girimaji, Influence of Knudsen and Mach numbers on Kelvin-Helmholtz instability, Phys. Rev. E 103(5), 053104 (2021)

    Article  ADS  Google Scholar 

  19. Y. B. Gan, A. G. Xu, G. C. Zhang, C. D. Lin, H. L. Lai, and Z. P. Liu, Nonequilibrium and morphological characterizations of Kelvin-Helmholtz instability in compressible flows, Front. Phys. 14(4), 43602 (2019)

    Article  ADS  Google Scholar 

  20. H. G. Lee and J. Kim, Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids, Eur. J. Mech. BFluids 49, 77 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. K. S. Kim and M. H. Kim, Simulation of the Kelvin-Helmholtz instability using a multi-liquid moving particle semi-implicit method, Ocean Eng. 130, 531 (2017)

    Article  Google Scholar 

  22. M. J. Yao, W. Q. Shang, Y. Zhang, H. Gao, D. X. Zhang, and P. Y. Liu, Numerical analysis of Kelvin-Helmholtz instability in inclined walls, Chin. J. Comput. Phys. 36, 403 (2019)

    Google Scholar 

  23. K. I. Ebihara and T. Watanabe, Lattice Boltzmann simulation of the interfacial growth of the horizontal stratified two-phase flow, Int. J. Mod. Phys. B 17(01n02), 113 (2003)

    Article  ADS  Google Scholar 

  24. Y. B. Gan, A. G. Xu, G. C. Zhang, and Y. J. Li, Lattice Boltzmann study on Kelvin-Helmholtz instability: Roles of velocity and density gradients, Phys. Rev. E 83(5), 056704 (2011)

    Article  ADS  Google Scholar 

  25. Y. G. Li, X. G. Geng, Z. J. Liu, H. P. Wang, and D. Y. Zang, Simulating Kelvin-Helmholtz instability using dissipative particle dynamics, Fluid Dyn. Res. 50(4), 045512 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. W. Q. Shang, Y. Zhang, Z. Q. Chen, Z. P. Yuan, and B. H. Dong, Numerical simulation of two-dimensional Kelvin-Helmholtz instabilities using a front tracking method, Chin. J. Comput. Mech. 35, 424 (2018)

    Google Scholar 

  27. G. A. Hoshoudy and M. K. Awasthi, Compressibility effects on the Kelvin-Helmholtz and Rayleigh-Taylor instabilities between two immiscible fluids flowing through a porous medium, Eur. Phys. J. Plus 135(2), 169 (2020)

    Article  Google Scholar 

  28. E. P. Budiana, Pranowo, Indarto, and Deendarlianto, The meshless numerical simulation of Kelvin-Helmholtz instability during the wave growth of liquid-liquid slug flow, Comput. Math. Appl. 80(7), 1810 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. R. M. McMullen, M. C. Krygier, J. R. Torczynski, and M. A. Gallis, Navier-Stokes equations do not describe the smallest scales of turbulence in gases, Phys. Rev. Lett. 128(11), 114501 (2022)

    Article  ADS  Google Scholar 

  30. A. G. Xu, C. D. Lin, G. C. Zhang, and Y. J. Li, Multiple-relaxation-time lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91(4), 043306 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. C. D. Lin and K. H. Luo, Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects, Phys. Rev. E 99(1), 012142 (2019)

    Article  ADS  Google Scholar 

  32. X. L. Su and C. D. Lin, Nonequilibrium effects of reactive flow based on gas kinetic theory, Commum. Theor. Phys. 74(3), 035604 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Y. B. Gan, A. G. Xu, G. C. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic nonequilibrium effects, Soft Matter 11(26), 5336 (2015)

    Article  ADS  Google Scholar 

  34. Y. B. Gan, A. G. Xu, G. C. Zhang, Y. D. Zhang, and S. Succi, Discrete Boltzmann trans-scale modeling of highspeed compressible flows, Phys. Rev. E 97(5), 053312 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. H. L. Lai, A. G. Xu, G. C. Zhang, Y. B. Gan, Y. J. Li, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)

    Article  ADS  Google Scholar 

  36. D. M. Li, H. L. Lai, A. G. Xu, G. C. Zhang, C. D. Lin, and Y. B. Gan, Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows, Acta Physica Sinica 67(8), 080501 (2018)

    Article  Google Scholar 

  37. H. Y. Ye, H. L. Lai, D. M. Li, Y. B. Gan, C. D. Lin, L. Chen, and A. G. Xu, Knudsen number effects on two-dimensional Rayleigh-Taylor instability in compressible fluid: Based on a discrete Boltzmann method, Entropy (Basel) 22(5), 500 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. L. Chen, H. L. Lai, C. D. Lin, and D. M. Li, Specific heat ratio effects of compressible Rayleigh-Taylor instability studied by discrete Boltzmann method, Front. Phys. 16(5), 52500 (2021)

    Article  ADS  Google Scholar 

  39. L. Chen, H. L. Lai, C. D. Lin, and D. M. Li, Numerical study of multimode Rayleigh-Taylor instability by using the discrete Boltzmann method, Acta Aerodyn. Sin. 40, 1 (2022)

    Google Scholar 

  40. C. D. Lin, A. G. Xu, G. C. Zhang, and Y. J. Li, An efficient two-dimensional discrete Boltzmann model of detonation, Adv. Condens. Matter Phys. 4(3), 102 (2015)

    Article  Google Scholar 

  41. F. Chen, A. G. Xu, and G. C. Zhang, Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability, Phys. Fluids 30(10), 102105 (2018)

    Article  ADS  Google Scholar 

  42. Y. D. Zhang, A. G. Xu, G. C. Zhang, Z. H. Chen, and P. Wang, Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model, Comput. Phys. Commun. 238, 50 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. C. D. Lin, K. H. Luo, Y. B. Gan, and Z. P. Liu, Kinetic simulation of nonequilibrium Kelvin-Helmholtz instability, Commum. Theor. Phys. 71(1), 132 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  44. D. J. Zhang, A. G. Xu, Y. D. Zhang, and Y. J. Li, Two-fluid discrete Boltzmann model for compressible flows: Based on ellipsoidal statistical Bhatnagar-Gross-Krook, Phys. Fluids 32(12), 126110 (2020)

    Article  ADS  Google Scholar 

  45. F. Chen, A. G. Xu, Y. D. Zhang, and Q. K. Zeng, Morphological and nonequilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability, Phys. Fluids 32(10), 104111 (2020)

    Article  ADS  Google Scholar 

  46. C. D. Lin, K. H. Luo, A. G. Xu, Y. B. Gan, and H. L. Lai, Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects, Phys. Rev. E 103(1), 013305 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  47. F. Chen, A. G. Xu, Y. D. Zhang, Y. B. Gan, B. B. Liu, and S. Wang, Effects of the initial perturbations on the Rayleigh-Taylor-Kelvin-Helmholtz instability system, Front. Phys. 17(3), 33505 (2022)

    Article  ADS  Google Scholar 

  48. R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222(3), 145 (1992)

    Article  ADS  Google Scholar 

  49. X. Y. He, S. Y. Chen, and G. D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys. 146(1), 282 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Z. H. Chai and B. C. Shi, Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements, Phys. Rev. E 102(2), 023306 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  51. Q. Li, H. Yang, and R. Z. Huang, Lattice Boltzmann simulation of solidliquid phase change with nonlinear density variation, Phys. Fluids 33(12), 123302 (2021)

    Article  ADS  Google Scholar 

  52. Z. D. Wang, Y. K. Wen, and Y. H. Qian, A novel thermal lattice Boltzmann model with heat source and its application in incompressible flow, Appl. Math. Comput. 427, 127167 (2022)

    MathSciNet  MATH  Google Scholar 

  53. A. G. Xu, J. Chen, J. H. Song, D. W. Chen, and Z. H. Chen, Progress of discrete Boltzmann study on multiphase complex flows, Acta Aerodyn. Sin. 39, 138 (2021)

    Google Scholar 

  54. A. G. Xu, J. H. Song, F. Chen, K. Xie, and Y. J. Ying, Modeling and analysis methods for complex fields based on phase space, Chin. J. Comput. Phys. 38, 631 (2021)

    Google Scholar 

  55. A. G. Xu, Y. M. Shan, F. Chen, Y. B. Gan, and C. D. Lin, Progress of mesoscale modeling and investigation of combustion multiphase flow, Acta Aero. Astro. Sin. 42, 625842 (2021)

    Google Scholar 

  56. G. P. Klaassen and W. R. Peltier, Evolution of finite amplitude Kelvin-Helmholtz billows in two spatial dimensions, J. Atmos. Sci. 42(12), 1321 (1985)

    Article  ADS  Google Scholar 

  57. G. P. Klaassen and W. R. Peltier, The effect of prandtl number on the evolution and stability of Kelvin-Helmholtz billows, Geophys. Astrophys. Fluid Dyn. 32(1), 23 (1985)

    Article  ADS  MATH  Google Scholar 

  58. R. Fatehi, M. S. Shadloo, and M. T. Manzari, Numerical investigation of two-phase secondary Kelvin-Helmholtz instability, Proc. Instit. Mech. Eng. C:J. Mech. Eng. Sci. 228(11), 1913 (2014)

    Article  Google Scholar 

  59. K. Kiuchi, P. Cerdá-Durán, K. Kyutoku, Y. Sekiguchi, and M. Shibata, Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers, Phys. Rev. D 92(12), 124034 (2015)

    Article  ADS  Google Scholar 

  60. Y. D. Zhang, A. G. Xu, G. C. Zhang, C. M. Zhu, and C. D. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)

    Article  Google Scholar 

  61. C. D. Lin, K. H. Luo, L. L. Fei, and S. Succi, A multi-component discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep. 7(1), 14580 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51806116 and 11875001) and the Natural Science Foundation of Fujian Provinces (Grant Nos. 2021J01652 and 2021J01655).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huilin Lai or Chuandong Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lai, H., Lin, C. et al. Influence of the tangential velocity on the compressible Kelvin-Helmholtz instability with nonequilibrium effects. Front. Phys. 17, 63500 (2022). https://doi.org/10.1007/s11467-022-1200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1200-3

Keywords

Navigation