Skip to main content
Log in

Kelvin–Helmholtz Instability in the Solar Atmosphere, Solar Wind and Geomagnetosphere

  • Waves in the Solar Corona
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Modern views on the nature of the Kelvin–Helmholtz (KH) instability and its manifestations in the solar corona, in the interplanetary medium, and at the geomagnetospheric boundary are under consideration. We briefly describe the main theoretical results of the KH instability obtained in the linear approximation. Analysis of observational data, confirming the occurrence of the KH instability in magnetic formations of the solar coronal plasma and on the daytime magnetopause, was mainly performed in the approximation of incompressibility. We show that the Rayleigh–Taylor instability can significantly enhance the KH instability in the above regions due to interface accelerations or its curvature. Special attention is focused on the compressibility effect on the supersonic shear flow instability in the solar wind (SW) and at the geomagnetic tail boundary where this instability is usually considered to be ineffective. We have shown that the phase velocity of oblique perturbations is substantially less than the flow velocity, and values of the growth rate and frequency range are considerably higher than when only taking velocity-aligned disturbances into account. We emphasize that the magnetic field and plasma density inhomogeneity which weaken the KH instability of subsonic shear flows, in the case of a supersonic velocity difference weaken the stabilizing effect of the medium compressibility, and can significantly increase the instability. Effective generation of oblique disturbances by the supersonic KH instability explains the observations of magnetosonic waves and the formation of diffuse shear flows in the SW and on the distant magnetotail boundary, as well as the SW-magnetosphere energy and impulse transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ajabshirizadeh, A., Ebadi, H., Vekalati, R.E., Molaverdikhani, K.: 2015, The possibility of Kelvin–Helmholtz instability in solar spicules. Astrophys. Space Sci. 357, 33. DOI .

    Article  ADS  Google Scholar 

  • Axford, W.I.: 1964, Viscous interaction between the solar wind and the Earth’s magnetosphere. Planet. Space Sci. 12, 45.

    Article  ADS  Google Scholar 

  • Bame, S., Anderson, R., Asbridge, J., Baker, D., Feldman, W., Gosling, J., Hones, E., McComas, D., Jr., Zwickl, R.: 1983, Plasma regimes in deep geomagnetic tail – ISEE 3. Geophys. Res. Lett. 10, 912.

    Article  ADS  Google Scholar 

  • Bettarini, L., Landi, S., Rappazzo, F., Velli, M., Opher, M.: 2006, Tearing and Kelvin–Helmholtz instabilities in the heliospheric plasma. Astron. Astrophys. 452, 321. DOI .

    Article  ADS  Google Scholar 

  • Blumen, W.: 1970, Shear layer of an inviscid compressible fluid. J. Fluid Mech. 46, 763.

    MATH  Google Scholar 

  • Blumen, W., Drazin, P.G., Billings, D.F.: 1975, Shear layer instability of an inviscid compressible fluid, Part 2. J. Fluid Mech. 71, 305.

    Article  ADS  MATH  Google Scholar 

  • Burlaga, L.: 1979, Magnetic field, plasmas, and coronal holes: the inner solar system. Space Sci. Rev. 23, 201.

    Article  ADS  Google Scholar 

  • Chandra, K.: 1973, Hydromagnetic stability of plane heterogeneous shear flow. J. Phys. Soc. Japan 34, 539.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford. 652 p.

    MATH  Google Scholar 

  • Chen, Y., Song, H.Q., Li, B., Xia, L.D., et al.: 2010, Streamer waves driven by coronal mass ejections. Astrophys. J. 714, 644. DOI .

    Article  ADS  Google Scholar 

  • Coleman, P.: 1968, Turbulence, viscosity and dissipation in solar-wind plasma. Astrophys. J. 153, 371.

    Article  ADS  Google Scholar 

  • Doschek, G.A., McKenzie, D.E., Warren, H.P.: 2014, Plasma dynamic above solar flare soft X-ray loop tops. Astrophys. J. 788, 26.

    Article  ADS  Google Scholar 

  • Drazin, P.G., Davey, A.: 1977, Shear layer instability of an inviscid compressible fluid. Part 3. J. Fluid Mech. 82, 255.

    Article  ADS  MATH  Google Scholar 

  • Dungey, J.B.: 1963, Structure of the exosphere and adventure in velocity space. In: De Witt, C., Hieblot, J., Lebeau, A. (eds.) The Geophysics: The Earth Environment, Gordon & Breach, New York, 403.

    Google Scholar 

  • Einaudi, G., Boncinelli, P., Dahlburg, R., Russel, B., Karpen, J.: 1999, Formation of the slow solar wind in a coronal streamer. J. Geophys. Res. 104, 521.

    Article  ADS  Google Scholar 

  • Feng, L., Inhester, B., Gan, W.Q.: 2013, Kelvin–Helmholtz instability of a coronal streamer. Astrophys. J. 774, 141. DOI .

    Article  ADS  Google Scholar 

  • Fletcher, R., Cargill, P.J., Antiochos, S.K., Gudiksen, B.V.: 2015, Structures in the outer solar atmosphere. Space Sci. Rev. 188, 211. DOI . doi:10.1088/2041-8205/729/1/L8.

    Article  ADS  Google Scholar 

  • Foullon, C., Verwichte, E., Nakariakov, V.M., Nykyri, K., Farrugia, C.J.: 2011a, Magnetic Kelvin–Helmholtz instability at the Sun. Astrophys. J. 729, L8.

    Article  ADS  Google Scholar 

  • Foullon, C., Lavraud, B., Luhmann, J.G., Farrugia, C.J., et al.: 2011b, Plasmoid releases in the heliospheric current sheet and associated coronal hole boundary layer evolution. Astrophys. J. 737, 16. DOI .

    Article  ADS  Google Scholar 

  • Goldstein, M.I., Roberts, D.A., Matthaeus, W.H.: 1995, Magnetohydrodynamic turbulence in the solar wind. Annu. Rev. Astron. Astrophys. 33, 283.

    Article  ADS  Google Scholar 

  • Gomez, D., DeLuca, E.E., Mininni, P.D.: 2016, Simulations of the Kelvin–Helmholtz instability driven by coronal mass ejections in the turbulent corona. Astrophys. J. 818, 126.

    Article  ADS  Google Scholar 

  • Gratton, F.T., Farrugia, C.J., Cowley, S.W.H.: 1996, Is the magnetopause Rayleigh–Taylor unstable sometimes? J. Geophys. Res. 101(A3), 4929.

    Article  ADS  Google Scholar 

  • Guglielmi, A.V., Potapov, A.S., Klain, B.I.: 2010a, Rayleigh–Taylor–Kelvin–Helmholtz combined instability at the magnetopause. Geomagn. Aeron. 50(8), 958. Special Issue 2

    Article  ADS  Google Scholar 

  • Guglielmi, A.V., Potapov, A.S., Klain, B.I.: 2010b, Solar. Terr. Phys. 15, 24 (original Russian text).

    Google Scholar 

  • Helmholtz, H.L.F.: 1868, On the discontinuous movements of fluids. Sitz.ber. Preuss. Akad. Wiss. Berl. Phil.-Hist. Kl. 23, 215.

    MATH  Google Scholar 

  • Holzwarth, V., Schmitt, D., Schüssler, M.: 2007, Flow instabilities of magnetic flux tubes. II. Longitudinal flow. Astron. Astrophys. 469, 11. DOI .

    Article  ADS  MATH  Google Scholar 

  • Hundhausen, A.: 1972, Coronal Expansion and Solar Wind, Springer, Heidelberg, 238.

    Book  Google Scholar 

  • Joarder, P.S., Nakariakov, V.M., Roberts, B.: 1997, A manifestation of negative energy waves in the solar atmosphere. Solar Phys. 176, 285. DOI .

    Article  ADS  Google Scholar 

  • Johnson, J.R., Wing, S., Delamere, P.A.: 2014, Kelvin–Helmholtz instability in planetary magnetospheres. Space Sci. Rev. 184, 1. DOI .

    Article  ADS  Google Scholar 

  • Kelvin, Lord (Thomson W.T.): 1871, Hydrokinetic solutions and observations. Philos. Mag. 42, 362.

  • Korzhov, N.P., Mishin, V.V., Tomozov, V.M.: 1984, On the role of plasma parameters and the Kelvin–Helmholtz instability in a viscous interaction of solar wind streams. Planet. Space Sci. 32, 1169.

    Article  ADS  Google Scholar 

  • Korzhov, N.P., Mishin, V.V., Tomozov, V.M.: 1985, On the viscous interaction of solar wind streams. Soviet Astron. 62, 371.

    Google Scholar 

  • Kovalenko, V.A., Korzhov, N.P.: 1976, Semi-empirical model of the solar wind. Soviet Astron. 53, 148.

    Google Scholar 

  • Landau, L.D.: 1944, Stability of tangential discontinuities in compressible fluid. C. R. (Dokl.) Acad. Sci. URSS 44, 139.

    MathSciNet  MATH  Google Scholar 

  • Leonovich, A.S.: 2011, MHD-instability of the magnetotail: global modes. Planet. Space Sci. 59, 402. DOI .

    Article  ADS  Google Scholar 

  • Leonovich, A.S., Mishin, V.V.: 2005, Stability of magnetohydrodynamic shear flows with and without bounding walls. J. Plasma Phys. 71, Part 5, 645. DOI .

    Article  ADS  Google Scholar 

  • Lee, L.C., Olson, J.V.: 1980, Kelvin–Helmholtz instability in the variation of geomagnetic pulsation activity. Geophys. Res. Lett. 7, 777.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI .

    Article  ADS  Google Scholar 

  • Michalke, A.: 1964, On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid Mech. 19, 543.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mishin, V.V.: 1980, About possible effects of MHD instability of the Earth’s magnetosphere boundary. Issled. Geomagn., Aèron. Fiz. Solntsa. 50, 150 (in Russian).

    ADS  Google Scholar 

  • Mishin, V.V.: 1981, On the MHD instability of the Earth’s magnetopause and its geophysical effects. Planet. Space Sci. 29, 359.

    Article  ADS  Google Scholar 

  • Mishin, V.V.: 1993, Accelerated motions of the magnetopause as a trigger of the Kelvin–Helmholtz instability. J. Geophys. Res. 98(A12), 21365.

    Article  ADS  Google Scholar 

  • Mishin, V.V.: 2003, On the predominance of oblique disturbances in the supersonic shear layer instability of the geomagnetic tail boundary. Nonlinear Process. Geophys. 10, 351.

    Article  ADS  Google Scholar 

  • Mishin, V.V.: 2005, Velocity boundary layers in the distant geotail and the Kelvin–Helmholtz instability. Planet. Space Sci. 53, 157. DOI .

    Article  ADS  Google Scholar 

  • Mishin, V.V., Morozov, A.G.: 1983, On the effect of oblique disturbances on Kelvin–Helmholtz instability in viscous interaction of solar wind streams. Planet. Space Sci. 31, 821.

    Article  ADS  Google Scholar 

  • Mishin, V.V., Matyukhin, Yu.G.: 1986, Kelvin–Helmholtz instability on the magnetopause as a possible source of wave energy in the Earth’s magnetosphere. Geomagn. Aeron. (Engl. Transl.) 26, 952.

    ADS  Google Scholar 

  • Mishin, V.V., Parkhomov, V.A., Tabanakov, I.V., Hayashi, K.: 2001, About “inclusion” of flute instability at the magnetopause during passing of the interplanetary magnetic cloud on January, 10 and 11 1997. Geomagn. Aeron. 41, 165 (in Russian). DOI .

    Google Scholar 

  • Miura, A.: 1987, Simulation of Kelvin–Helmholtz instability at the magnetopause boundary. J. Geophys. Res. 92, 3195.

    Article  ADS  Google Scholar 

  • Miura, A.: 1992, Kelvin–Helmholtz instability at the magnetospheric boundary: dependence on the magnetosheath sonic Mach number. J. Geophys. Res. 97(10), 655.

    Google Scholar 

  • Morozov, A.G., Mishin, V.V.: 1981, Influence of the magnetospheric boundary layer structure on Kelvin–Helmholtz instability. Geomagn. Aeron. 21, 1044.

    ADS  Google Scholar 

  • Möstl, U.V., Temmer, M., Veronig, A.M.: 2013, The Kelvin–Helmholtz instability at coronal mass ejection boundaries in the solar corona: observations and 2.5D MHD simulations. Astrophys. J. Lett. 766, L12. DOI .

    Article  ADS  Google Scholar 

  • Nakamura, T.K.M., Daughton, W., Karimabadi, H., Eriksson, S.: 2013, Three-dimensional dynamics of vortex induced reconnection and comparison with THEMIS observations. J. Geophys. Res. 118, 5742. DOI .

    Article  Google Scholar 

  • Ofman, L., Thompson, B.J.: 2011, SDO/AIA observation of Kelvin–Helmholtz instability in the solar corona. Astrophys. J. 734, L11. DOI .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1964, Dynamical properties of stellar coronae and stellar winds. Astrophys. J. 139, 690.

    Article  ADS  MathSciNet  Google Scholar 

  • Roberts, D.A., Goldstein, M.L., Matthaeus, W.H.: 1992, Velocity shear generation of solar wind turbulence. J. Geophys. Res. 97(A11), 17115.

    Article  ADS  Google Scholar 

  • Rosenbauer, H., Schwenn, R., Marsch, E., Meyer, B., Miggenrieder, H., Montgomery, M.D., et al.: 1977, A survey of initial results of the Helios plasma experiment. J. Geophys. Res. 82, 561.

    Article  Google Scholar 

  • Ryutova, M., Berger, T., Frank, Z., Tarbell, T., Title, A.: 2010, Observation of plasma instabilities in quiescent prominences. Solar Phys. 267, 75. DOI .

    Article  ADS  Google Scholar 

  • Shen, C., Liu, Z.X.: 1999, The coupling mode between Kelvin–Helmholtz and resistive instabilities in compressible plasmas. Phys. Plasmas 6(9), 2883.

    Article  ADS  MathSciNet  Google Scholar 

  • Shibata, K., Ishido, Y., Acton, L.W., Strong, K.T., et al.: 1992, Observations of X-ray jets with the YOHKOH soft X-ray telescope. Publ. Astron. Soc. Japan 44, L173.

    ADS  Google Scholar 

  • Shimojo, M., Hashimoto, S., Shibata, K., Hirayama, T., et al.: 1996, Statistical study of solar X-ray jets observed with YOHKOH soft X-ray telescope. Publ. Astron. Soc. Japan 48, 123.

    Article  ADS  Google Scholar 

  • Sibeck, D.G., Slavin, J.A., Smith, E.J.: 1987, ISEE-3 magnetopause crossing: evidence for the Kelvin–Helmholtz instability. In: Lui, A.T.Y. (ed.) Magnetotail Physics, J. Hopkins Press, Baltimore, 73.

    Google Scholar 

  • Syrovatsky, S.I.: 1954, Instability of tangential discontinuities in a compressible medium. Sov. Phys. JETP 27, 121.

    MathSciNet  Google Scholar 

  • Syrovatsky, S.I.: 1957, Magnetic hydrodynamics. Sov. Phys. Usp. 62, 247.

    Article  Google Scholar 

  • Vasheghani Farahani, S., Van Doorsselaere, T., Verwichte, E., Nakariakov, V.M.: 2009, Propagating transverse waves in soft X-ray coronal jets. Astron. Astrophys. 498, L29. DOI .

    Article  ADS  MATH  Google Scholar 

  • Wedemeyer-Böhm, S., Lagg, A., Nordlund, A.: 2009, Coupling from the photosphere to the chromosphere and the corona. Space Sci. Rev. 144, 317.

    Article  ADS  Google Scholar 

  • Zhelyazkov, I., Zaqarashvili, T.V.: 2012, Kelvin–Helmholtz instability of kink waves in photospheric twisted flux tubes. Astron. Astrophys. 547, A14. DOI .

    Article  ADS  Google Scholar 

  • Zhelyazkov, I., Chandra, R., Srivastava, A.K., Mishonov, T.: 2015, Kelvin–Helmholtz instability of magnetohydrodynamic waves propagating on solar surges. Astrophys. Space Sci. 356, 231. DOI .

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Zhelyazkov, I., Ofman, L.: 2015, Stability of rotating magnetized jets in the solar atmosphere. I. Kelvin–Helmholtz instability. Astrophys. J. 813, 123. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, grants Nos. 14-05-91165 and 15-05-05561.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Mishin.

Additional information

Dedicated to the memory of Dr. N.P. Korzhov.

Waves in the Solar Corona: From Microphysics to Macrophysics

Guest Editors: Valery M. Nakariakov, David J. Pascoe, and Robert A. Sych

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishin, V.V., Tomozov, V.M. Kelvin–Helmholtz Instability in the Solar Atmosphere, Solar Wind and Geomagnetosphere. Sol Phys 291, 3165–3184 (2016). https://doi.org/10.1007/s11207-016-0891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0891-4

Keywords

Navigation