Skip to main content
Log in

Effects of the initial perturbations on the Rayleigh—Taylor—Kelvin—Helmholtz instability system

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The effects of initial perturbations on the Rayleigh—Taylor instability (RTI), Kelvin—Helmholtz instability (KHI), and the coupled Rayleigh—Taylor—Kelvin—Helmholtz instability (RTKHI) systems are investigated using a multiple-relaxation-time discrete Boltzmann model. Six different perturbation interfaces are designed to study the effects of the initial perturbations on the instability systems. It is found that the initial perturbation has a significant influence on the evolution of RTI. The sharper the interface, the faster the growth of bubble or spike. While the influence of initial interface shape on KHI evolution can be ignored. Based on the mean heat flux strength D3,1, the effects of initial interfaces on the coupled RTKHI are examined in detail. The research is focused on two aspects: (i) the main mechanism in the early stage of the RTKHI, (ii) the transition point from KHI-like to RTI-like for the case where the KHI dominates at earlier time and the RTI dominates at later time. It is found that the early main mechanism is related to the shape of the initial interface, which is represented by both the bilateral contact angle θ1 and the middle contact angle θ2. The increase of θ1 and the decrease of θ2 have opposite effects on the critical velocity. When θ2 remains roughly unchanged at 90 degrees, if θ1 is greater than 90 degrees (such as the parabolic interface), the critical shear velocity increases with the increase of θ1, and the ellipse perturbation is its limiting case; If θ1 is less than 90 degrees (such as the inverted parabolic and the inverted ellipse disturbances), the critical shear velocities are basically the same, which is less than that of the sinusoidal and sawtooth disturbances. The influence of inverted parabolic and inverted ellipse perturbations on the transition point of the RTKHI system is greater than that of other interfaces: (i) For the same amplitude, the smaller the contact angle θ1, the later the transition point appears; (ii) For the same interface morphology, the disturbance amplitude increases, resulting in a shorter duration of the linear growth stage, so the transition point is greatly advanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. Y. Zhou, Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing (I), Phys. Rep. 720, 1 (2017)

    ADS  MATH  Google Scholar 

  2. Y. Zhou, Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing (II), Phys. Rep. 723–725, 1 (2017)

    ADS  MATH  Google Scholar 

  3. Y. Zhou, T. T. Clark, D. S. Clark, G. S. Gail, S. M. Aaron, C. M. Huntington, O. A. Hurricane, A. M. Dimits, and B. A. Remington, Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities, Phys. Plasmas 26(8), 080901 (2019)

    Article  ADS  Google Scholar 

  4. H. Li, B. Tian, Z. He, and Y. Zhang, Growth mechanism of interfacial fluid mixing width induced by successive nonlinear wave interactions, Phys. Rev. E 103(5), 053109 (2021)

    Article  ADS  Google Scholar 

  5. L. F. Wang, C. Xue, W. H. Ye, and Y. J. Li, Destabilizing effect of density gradient on the Kelvin-Helmholtz instability, Phys. Plasmas 16(11), 112104 (2009)

    Article  ADS  Google Scholar 

  6. F. Chen, A. G. Xu, G. C. Zhang, Y. J. Li, and S. Succi, Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett. 90(5), 54003 (2010)

    Article  ADS  Google Scholar 

  7. H. Liang, Q. X. Li, B. C. Shi, and Z. H. Chai, Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability, Phys. Rev. E 93(3), 033113 (2016)

    Article  ADS  Google Scholar 

  8. H. Liang, X. L. Hu, X. F. Huang, and J. R. Xu, Direct numerical simulations of multi-mode immiscible Rayleigh-Taylor instability with high Reynolds numbers, Phys. Fluids 31(11), 112104 (2019)

    Article  ADS  Google Scholar 

  9. H. Liang, Z. H. Xia, and H. W. Huang, Late-time description of immiscible Rayleigh-Taylor instability: A lattice Boltzmann study, Phys. Fluids 33(8), 082103 (2021)

    Article  ADS  Google Scholar 

  10. Z. Zhai, L. Zou, Q. Wu, and X. Luo, Review of experimental Richtmyer-Meshkov instability in shock tube: From simple to complex, J. Mech. Eng. Sci. 232(16), 2830 (2018)

    Article  Google Scholar 

  11. L. Zou, J. Liu, S. Liao, X. Zheng, Z. Zhai, and X. Luo, Richtmyer-Meshkov instability of a flat interface subjected to a rippled shock wave, Phys. Rev. E 95(1), 013107 (2017)

    Article  ADS  Google Scholar 

  12. L. Zou, M. Al-Marouf, W. Cheng, R. Samtaney, J. Ding, and X. Luo, Richtmyer-Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock, J. Fluid Mech. 879, 448 (2019)

    Article  ADS  MATH  Google Scholar 

  13. A. Ravid, R. I. Citron, and R. Jeanloz, Hydrodynamic instability at impact interfaces and planetary implications, Nat. Commun. 12(1), 2104 (2021)

    Article  ADS  Google Scholar 

  14. Y. W. Bin, M. J. Xiao, Y. P. Shi, Y. S. Zhang, and S. Y. Chen, A new idea to predict reshocked Richtmyer-Meshkov mixing: Constrained large-eddy simulation, J. Fluid Mech. 918, R1 (2021)

    Article  ADS  MATH  Google Scholar 

  15. H. Y. Ye, H. L. Lai, D. M. Li, Y. B. Gan, C. D. Lin, L. Chen, and A. G. Xu, Knudsen number effects on two-dimensional Rayleigh-Taylor instability in compressible fluid: Based on a discrete Boltzmann method, Entropy (Basel) 22(5), 500 (2020)

    Article  ADS  Google Scholar 

  16. L. Chen, H. L. Lai, C. D. Lin, and D. M. Li, Specific heat ratio effects of compressible Rayleigh-Taylor instability studied by discrete Boltzmann method, Front. Phys. 16(5), 52500 (2021)

    Article  ADS  Google Scholar 

  17. J. G. Tang, F. Zhang, X. S. Luo, and Z. G. Zhai, Effect of Atwood number on convergent Richtmyer-Meshkov instability, Acta Mech. Sin. 37(3), 434 (2021)

    Article  ADS  Google Scholar 

  18. C. D. Lin, K. H. Luo, Y. B. Gan, and Z. P. Liu, Kinetic simulation of nonequilibrium Kelvin-Helmholtz instability, Commun. Theor. Phys. 71(1), 132 (2019)

    Article  ADS  Google Scholar 

  19. R. H. Zeng, J. J. Tao, and Y. B. Sun, Three-dimensional viscous Rayleigh-Taylor instability at the cylindrical interface, Phys. Rev. E 102(2), 023112 (2020)

    Article  ADS  Google Scholar 

  20. Y. B. Sun, R. H. Zeng, and J. J. Tao, Effects of viscosity and elasticity on Rayleigh-Taylor instability in a cylindrical geometry, Phys. Plasmas 28(6), 062701 (2021)

    Article  ADS  Google Scholar 

  21. G. Dimonte, Dependence of turbulent Rayleigh-Taylor (RT) instability on initial perturbations, Phys. Rev. E 69(5), 056305 (2004)

    Article  ADS  Google Scholar 

  22. A. R. Miles, M. J. Edwards, and J. A. Greenough, Effect of initial conditions on two-dimensional Rayleigh-Taylor instability and transition to turbulence in planar blast-wave-driven systems, Phys. Plasmas 11(11), 5278 (2004)

    Article  ADS  Google Scholar 

  23. P. Ramaprabhu, G. Dimonte, and M. J. Andrews, A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability, J. Fluid Mech. 536, 285 (2005)

    Article  ADS  MATH  Google Scholar 

  24. D. H. Olson and J. W. Jacobs, Experimental study of Rayleigh-Taylor instability with a complex initial perturbation, Phys. Fluids 21(3), 034103 (2009)

    Article  ADS  MATH  Google Scholar 

  25. A. A. Gowardhan, J. R. Ristorcelli, and F. F. Grinstein, The bipolar behavior of the Richtmyer-Meshkov instability, Phys. Fluids 23(7), 071701 (2011)

    Article  ADS  Google Scholar 

  26. Y. Doron and A. Duggleby, Optical density measurements and analysis for single-mode initial-condition buoyancy-driven mixing, J. Fluids Eng. 133(10), 101204 (2011)

    Article  Google Scholar 

  27. T. Wei and D. Livescu, Late-time quadratic growth in single-mode Rayleigh-Taylor instability, Phys. Rev. E 86(4), 046405 (2012)

    Article  ADS  Google Scholar 

  28. S. Kuchibhatla and D. Ranjan, Effect of initial conditions on Rayleigh-Taylor mixing: Modal interaction, Phys. Scr. T155, 014057 (2013)

    Article  Google Scholar 

  29. W. H. Liu, L. F. Wang, W. H. Ye, and X. T. He, Temporal evolution of bubble tip velocity in classical Rayleigh-Taylor instability at arbitrary Atwood numbers, Phys. Plasmas 20(6), 062101 (2013)

    Article  ADS  Google Scholar 

  30. J. A. Mc Farland, J. A. Greenough, and D. Ranjan, Investigation of the initial perturbation amplitude for the inclined interface Richtmyer-Meshkov instability, Phys. Scr. T155, 014014 (2013)

    Article  Google Scholar 

  31. Z. G. Zhai, M. H. Wang, T. Si, and X. S. Luo, On the interaction of a planar shock with a light polygonal interface, J. Fluid Mech. 757, 800 (2014)

    Article  ADS  Google Scholar 

  32. X. S. Luo, M. H. Wang, T. Si, and Z. G. Zhai, On the interaction of a planar shock with an SFβ polygon, J. Fluid Mech. 773, 366 (2015)

    Article  ADS  Google Scholar 

  33. Z. Dell, R. F. Stellingwerf, and S. I. Abarzhi, Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks, Phys. Plasmas 22(9), 092711 (2015)

    Article  ADS  Google Scholar 

  34. J. X. Xiao, J. S. Bai, and T. Wang, Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in non-uniform flows, Phys. Rev. E 94(1), 013112 (2016)

    Article  ADS  Google Scholar 

  35. C. Y. Xie, J. J. Tao, Z. L. Sun, and J. Li, Retarding viscous Rayleigh-Taylor mixing by an optimized additional mode, Phys. Rev. E 95(2), 023109 (2017)

    Article  ADS  Google Scholar 

  36. A. Kord and J. Capecelatro, Optimal perturbations for controlling the growth of a Rayleigh-Taylor instability, J. Fluid Mech. 876, 150 (2019)

    Article  ADS  MATH  Google Scholar 

  37. R. Sun, J. C. Ding, Z. G. Zhai, T. Si, and X. S. Luo, Convergent Richtmyer-Meshkov instability of heavy gas layer with perturbed inner surface, J. Fluid Mech. 902, A3 (2020)

    Article  ADS  MATH  Google Scholar 

  38. Y. Liang, L. L. Liu, Z. G. Zhai, T. Si, and X. S. Luo, Universal perturbation growth of Richtmyer-Meshkov instability for minimum-surface featured interface induced by weak shock waves, Phys. Fluids 33(3), 032110 (2021)

    Article  ADS  Google Scholar 

  39. L. F. Wang, W. H. Ye, and Y. J. Li, Combined effect of the density and velocity gradients in the combination of Kelvin-Helmholtz and Rayleigh-Taylor instabilities, Phys. Plasmas 17(4), 042103 (2010)

    Article  ADS  Google Scholar 

  40. W. H. Ye, L. F. Wang, C. Xue, Z. F. Fan, and X. T. He, Competitions between Rayleigh-Taylor instability and Kelvin-Helmholtz instability with continuous density and velocity profiles, Phys. Plasmas 18(2), 022704 (2011)

    Article  ADS  Google Scholar 

  41. L. Mandal, S. Roy, R. Banerjee, M. Khan, and M. R. Gupta, Evolution of nonlinear interfacial structure induced by combined effect of Rayleigh-Taylor and Kelvin-Helmholtz instability, Nucl. Instr. Meth. Phys. Res. A 653(1), 103 (2011)

    Article  ADS  Google Scholar 

  42. B. J. Olson, J. Larsson, S. K. Lele, and A. W. Cook, Nonlinear effects in the combined Rayleigh—Taylor/Kelvin—Helmholtz instability, Phys. Fluids 23(11), 114107 (2011)

    Article  ADS  Google Scholar 

  43. B. Akula, M. J. Andrews, and D. Ranjan, Effect of shear on Rayleigh-Taylor mixing at small Atwood number, Phys. Rev. E 87(3), 033013 (2013)

    Article  ADS  Google Scholar 

  44. M. Vadivukkarasan and M. V. Panchagnula, Helical modes in combined Rayleigh-Taylor and Kelvin-Helmholtz instability of a cylindrical interface, Int. J. Spray Combust. 8(4), 219 (2016)

    Article  Google Scholar 

  45. M. Vadivukkarasan and M. V. Panchagnula, Combined Rayleigh-Taylor and Kelvin-Helmholtz instabilities on an annular liquid sheet, J. Fluid Mech. 812, 152 (2017)

    Article  ADS  MATH  Google Scholar 

  46. M. Vadivukkarasan, Temporal instability characteristics of Rayleigh-Taylor and Kelvin-Helmholtz mechanisms of an inviscid cylindrical interface, Meccanica 56(1), 117 (2021)

    Article  Google Scholar 

  47. V. D. Sarychev, S. A. Nevskii, A. Y. Granovskii, S. V. Konovalov, and V. E. Gromov, Combined Rayleigh-Taylor-Kelvin-Helmholtz instability and its role in the formation of the surface relief of the coating/substrate, AIP Conf. Proc. 2167, 020307 (2019)

    Article  Google Scholar 

  48. S. Brizzolara, J. Mollicone, M. Van Reeuwijk, A. Mazzino, and M. Holzner, Transition from shear-dominated to Rayleigh-Taylor turbulence, J. Fluid Mech. 924, A10 (2021)

    Article  MATH  Google Scholar 

  49. F. Chen, A. G. Xu, Y. D. Zhang, and Q. K. Zeng, Morphological and nonequilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability, Phys. Fluids 32(10), 104111 (2020)

    Article  ADS  Google Scholar 

  50. Without causing misunderstanding, DBM is used as an abbreviation of discrete Boltzmann Model/Modeling/Method.

  51. A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)

    Article  ADS  Google Scholar 

  52. A. G. Xu, G. C. Zhang, and Y. J. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Phys. Sin. 64(18), 184701 (2015)

    Article  Google Scholar 

  53. A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38, 361 (2016)

    Google Scholar 

  54. A. G. Xu, G. C. Zhang, and Y. D. Zhang, Discrete Boltzmann Modeling of Compressible Flows, Chapter 2 in Kinetic Theory, edited by G. Z. Kyzas and A. C. Mitropoulos, Rijeka: In Tech, 2018

  55. A. G. Xu, J. Chen, J. H. Song, D. W. Chen, and Z. H. Chen, Progress of discrete Boltzmann study on multiphase complex flows, Acta Aerodyn. Sin. 39(3), 138 (2021)

    Google Scholar 

  56. A. G. Xu, J. H. Song, F. Chen, K. Xie, and Y. J. Ying, Modeling and analysis methods for complex fields based on phase space, Chinese J. Comput. Phys. 38(6), 631 (2021) (in Chinese)

    Google Scholar 

  57. A. G. Xu, Y. M. Shan, F. Chen, Y. B. Gan, and C. D. Lin, Progress of mesoscale modeling and investigation of combustion multiphase flow, Acta Aero. Astro. Sin. 42(12), 625842 (2021)

    Google Scholar 

  58. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001

    MATH  Google Scholar 

  59. R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222(3), 145 (1992)

    Article  ADS  Google Scholar 

  60. X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47(3), 1815 (1993)

    Article  ADS  Google Scholar 

  61. Y. Zhang, R. Qin, and D. Emerson, Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71(4), 047702 (2005)

    Article  ADS  Google Scholar 

  62. V. E. Ambruç and V. Sofonea, Quadrature-Based Lattice Boltzmann Models for Rarefied Gas Flow, edited by F. Toschi and M. Sega, Springer, 2019

  63. Y. B. Li and X. W. Shan, Lattice Boltzmann method for adiabatic acoustics, Phil. Trans. R. Soc. A 369(1944), 2371 (2011)

    Article  ADS  MATH  Google Scholar 

  64. Q. Li, K. H. Luo, Y. J. Gao, and Y. L. He, Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows, Phys. Rev. E 85(2), 026704 (2012)

    Article  ADS  Google Scholar 

  65. Z. Wang, Y. Wei, and Y. Qian, A simple direct heating thermal immersed boundary-lattice Boltzmann method for its application in incompressible flow, Comput. Math. Appl. 80(6), 1633 (2020)

    Article  MATH  Google Scholar 

  66. Z. Chen, C. Shu, and D. Tan, Highly accurate simplified lattice Boltzmann method, Phys. Fluids 30(10), 103605 (2018)

    Article  ADS  Google Scholar 

  67. F. B. Tian, H. Luo, L. Zhu, J. C. Liao, and X. Y. Lu, An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys. 230(19), 7266 (2011)

    Article  ADS  MATH  Google Scholar 

  68. F. B. Tian, Y. Wang, H. Liu, and Y. Zhang, The lattice Boltzmann method and its applications in complex flows and fluid-structure interactions, Inst. Mech. Eng. C 232(3), 403 (2018)

    Article  Google Scholar 

  69. H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phase-field-based multiple relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89(5), 053320 (2014)

    Article  ADS  Google Scholar 

  70. Y. Wang, C. Zhong, C. Zhuo, and S. Liu, A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, Part I: Numerical framework and its application to laminar flow simulation, Comput. Math. Appl. 79(5), 1590 (2020)

    Article  MATH  Google Scholar 

  71. K. Pasieczynski and B. X. Chen, Multipseudopotential interaction models for thermal lattice Boltzmann method simulations, Phys. Rev. E 102(1), 013311 (2020)

    Article  ADS  Google Scholar 

  72. R. Qiu, Y. Bao, T. Zhou, H. Che, R. Chen, and Y. You, Study of regular reflection shock waves using a mesoscopic kinetic approach: Curvature pattern and effects of viscosity, Phys. Fluids 32(10), 106106 (2020)

    Article  ADS  Google Scholar 

  73. R. Qiu, T. Zhou, Y. Bao, K. Zhou, H. Che, and Y. You, Mesoscopic kinetic approach for studying nonequilibrium hydrodynamic and thermodynamic effects of shock wave, contact discontinuity, and rarefaction wave in the unsteady shock tube, Phys. Rev. E 103(5), 053113 (2021)

    Article  ADS  Google Scholar 

  74. D. K. Sun, A discrete kinetic scheme to model anisotropic liquid-solid phase transitions, Appl. Math. Lett. 103, 106222 (2020)

    Article  MATH  Google Scholar 

  75. D. K. Sun, H. Xing, X. L. Dong, and Y. S. Han, An anisotropic lattice Boltzmann-phase field scheme for numerical simulations of dendritic growth with melt convection, Int. J. Heat Mass Tran. 133, 1240 (2019)

    Article  Google Scholar 

  76. C. J. Zhan, Z. H. Chai, and B. C. Shi, A lattice Boltzmann model for the coupled cross-diffusion-fluid system, Appl. Math. Comput. 400, 126105 (2021)

    MATH  Google Scholar 

  77. A. Xu, G. Zhang, X. Pan, P. Zhang, and J. Zhu, Morphological characterization of shocked porous material, J. Phys. D 42(7), 075409 (2009)

    Article  ADS  Google Scholar 

  78. A. G. Xu, G. C. Zhang, H. Li, Y. J. Ying, X. J. Yu, and J. S. Zhu, Temperature pattern dynamics in shocked porous materials, Sci. China Phys. Mech. Astron. 53(8), 1466 (2010)

    Article  ADS  Google Scholar 

  79. A. G. Xu, G. C. Zhang, Y. J. Ying, and C. Wang, Complex fields in heterogeneous materials under shock: Modeling, simulation and analysis, Sci. China Phys. Mech. Astron. 59(5), 650501 (2016)

    Article  Google Scholar 

  80. F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor Instability, Front. Phys. 11(6), 114703 (2016)

    Article  ADS  Google Scholar 

  81. F. Chen, A. Xu, and G. Zhang, Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability, Phys. Fluids 30(10), 102105 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2020MA061 and ZR2019PA021), Shandong Province Higher Educational Youth Innovation Science and Technology Program (Grant No. 2019KJJ009), the National Natural Science Foundation of China (Grant Nos. 12172061, 11875001, and 12102397), CAEP Foundation (Grant No. CX2019033), the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (Grant No. KFJJ21-16M), the China Postdoctoral Science Foundation (Grant No. 2019M662521), Science Foundation of Hebei Province (Grant No. A2021409001), and “Three, Three and Three Talent Project” of Hebei Province (Grant No. A202105005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Chen  (陈锋) or Aiguo Xu  (许爱国).

Additional information

arXiv: 2112.14534. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1145-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Xu, A., Zhang, Y. et al. Effects of the initial perturbations on the Rayleigh—Taylor—Kelvin—Helmholtz instability system. Front. Phys. 17, 33505 (2022). https://doi.org/10.1007/s11467-021-1145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1145-y

Keywords

Navigation