Skip to main content
Log in

Experimental and Numerical Investigation of the Dynamics of Development of Rayleigh–Taylor Instability at Atwood Numbers Close to Unity

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

This paper presents the experimental and numerical results of studying the growth dynamics of the deterministic and given initial perturbations defined in a certain way. The formation, growth, and further evolution of inhomogeneities of the contact boundary occurs due to the development of the Rayleigh–Taylor instability (RTI) at the gas-liquid interface, and in particular (in this study), the air-water interface. The significant difference in the densities of the selected substances leads to a noticeable slowdown in the dynamics of the Kelvin–Helmholtz instability (KHI), which is responsible for the formation of mushroom-like structures, and, as a result, to the longer growth of water jets and the later moment of their destruction and transition to mixing. In this study, a quantitative comparison of the physical data recorded on the original experimental setup, which is described in this paper, with the calculated data obtained using various numerical methods is carried out. The numerical modeling is based on a complete 2D hydrodynamic model for describing the dynamics of the development of the RTI. The surface tension (water-air) and viscosity (water or air) are neglected in this study. The parameters of the development of the instability measured in the experiment and found in the calculations indicate satisfactory agreement between the obtained data. The quantitative results presented in this study justify the use of the classical hydrodynamics model to describe the movements of liquid and gas observed in this experiment and the fairly accurate numerical implementation of the corresponding model in the difference methods used here. The investigation of the development of turbulent mixing depending on well-defined initial conditions and the new regularities of the laws of mixing of the media of different densities that arise in this case is an important element in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13. 
Fig. 14.
Fig. 15.

Similar content being viewed by others

RЕFERENCES

  1. Rayleigh (Lord), “Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density,” Proc. London Math. Soc. s1-14 (1), 170–177 (1882). https://doi.org/10.1112/plms/s1-14.1.170

  2. G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their plane. I,” Proc. R. Soc. London A. 201 (1065), 192–196 (1950). https://doi.org/10.1098/rspa.1950.0052

    Article  MathSciNet  MATH  Google Scholar 

  3. R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Commun. Pure Appl. Math. 13 (2), 297–319 (1960). https://doi.org/10.1002/cpa.3160130207

    Article  MathSciNet  Google Scholar 

  4. E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave,” Sov. Fluid Dyn. 4 (5), 101–104 (1969). https://doi.org/10.1007/BF01015969

    Article  Google Scholar 

  5. H. von Helmholtz, “Über discontinuierliche Flüssigkeits-Bewegungen,” Monatsber. K. Preuss. Akad. Wiss. Berlin 23, 215–228 (1868).

    Google Scholar 

  6. Ya. V. Babkin, “Numerical study of turbulent fluid spreading under the action of gravity in shallow river mouths,” Izv. Ross. Akad. Nauk, Mekh, Zhidk. Gaza, No. 3, 172–178 (1999).

  7. Hydrodynamic Instability, Proc. Symposia in Applied Mathematics, Vol. 13, Ed. by G. Birkhoff, R. Bellman, and C.-C. Lin (Am. Math. Soc., Providence, RI, 1962). https://doi.org/10.1090/psapm/013

  8. A. V. Gorodnichev, G. V. Dolgoleva, V. A. Zhmailo, E. A. Novikova, and V. P. Statsenko, “Numerical simulation of the interaction of a pulsar wind with the supernova shell in the Crab Nebula,” Tr. RFYaTs-VNIIEF, No. 11, 26–39 (2007).

    Google Scholar 

  9. O. B. Drennov, Shear Instability in Media with Strength (RFYaTs-VNIIEF, Sarov, 2014) [in Russian].

  10. R. P. Drake, C. C. Kuranz, A. R. Miles, H. J. Muthsam, and T. Plewa, “Stellar explosions, instabilities, and turbulence,” Phys. Plasmas 16 (4), 041004 (2009). https://doi.org/10.1063/1.3101816

    Article  Google Scholar 

  11. N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, and V. S. Belyaev, “Ejection of heavy elements from the stellar core to the periphery of the cloud of ejecta during a supernova explosion: A possible model of the processes,” J. Exp. Theor. Phys. 118 (3), 384–394 (2014). https://doi.org/10.1134/S1063776114030200

    Article  Google Scholar 

  12. E. G. Gamalii, V. B. Rozanov, A. A. Samarskii, V. F. Tishkin, N. N. Tyurina, and A. P. Favorskii, “Hydrodynamic stability of compression of spherical laser targets,” Sov. Phys.–JETP 52 (2), 230–237 (1980).

    Google Scholar 

  13. S. A. Bel’kov, S. V. Bondarenko, N. N. Demchenko, S. G. Garanin, S. Yu. Gus’kov, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, and N. V. Zmitrenko, “Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by a multi-beam megajoule laser,” Plasma Phys. Controlled Fusion, 61 (2), 025011 (2019). https://doi.org/10.1088/1361-6587/aaf062

    Article  Google Scholar 

  14. E. E. Meshkov, RayleighTaylor Instability. Research of Hydrodynamic Instabilities in Laboratory Experiments (Krasnyi Oktyabr’, Sarov, Saransk, 2002) [in Russian].

    Google Scholar 

  15. D. J. Lewis, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II,” Proc. R. Soc. London A 202, 81–96 (1950).

    Article  Google Scholar 

  16. D. Layzer, “On the instability of superposed fluids in a gravitational field,” Astrophys. J. 122, 1–12 (1955). https://doi.org/10.1086/146048

    Article  MathSciNet  Google Scholar 

  17. V. N. Goncharov, “Analytical model of nonlinear-single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers,” Phys. Rev. Lett. 88 (13), 134502 (2002). https://doi.org/10.1103/PhysRevLett.88.134502

    Article  Google Scholar 

  18. K. O. Mikaelian, “Explicit expressions for the evolution of single-mode Rayleigh–Taylor and Richtmyer–Meshkov instabilities at arbitrary Atwood numbers,” Phys. Rev. E 67 (2), 026319 (2003). https://doi.org/10.1103/PhysRevE.67.026319

    Article  Google Scholar 

  19. S.-I. Sohn, “Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios,” Phys. Rev. E 67 (2), 026301 (2003). https://doi.org/10.1103/PhysRevE.67.026301

    Article  Google Scholar 

  20. E. Fermi and J. von Neumann, Taylor Instability of Incompressible Liquids, Report AECU-2979 (U. S. Atomic Energy Commission, Technical Information Service, Oak Ridge, TN, 1953).

  21. G. Birkhoff, Taylor Instability and Laminar Mixing, Report LA-1862 (Los Alamos Scientific Laboratory, University of California, Los Alamos, 1955).

  22. S. W. Haan, “Onset of nonlinear saturation for Rayleigh–Taylor growth in the presence of a full spectrum of modes,” Phys. Rev. A 39 (11), 5812–5825 (1989). https://doi.org/10.1103/PhysRevA.39.5812

    Article  Google Scholar 

  23. S. W. Haan, “Weakly nonlinear hydrodynamic instabilities in inertial fusion,” Phys. Fluids B: Plasma Phys. 3 (8), 2349–2355 (1991). https://doi.org/10.1063/1.859603

    Article  Google Scholar 

  24. N. V. Zmitrenko, N. G. Proncheva, and V. B. Rozanov, “An evolutionary model of a turbulent mixing layer,” Preprint No. 65 (FIAN, Moscow, 1997) [in Russian].

    Google Scholar 

  25. K. O. Mikaelian, “Solution to Rayleigh–Taylor instabilities: Bubbles, spikes, and their scalings,” Phys. Rev. E 89 (5), 053009 (2014). https://doi.org/10.1103/PhysRevE.89.053009

    Article  Google Scholar 

  26. I. G. Lebo, V. V. Nikishin, V. B. Rozanov, and V. F. Tishkin, “Numerical simulation of evolution of multimode initial perturbations in the development of Richtmyer–Meshkov instabilities,” J. Russ. Laser Res. 19 (5), 483–504 (1998). https://doi.org/10.1007/BF03380145

    Article  Google Scholar 

  27. D. L. Youngs, “Numerical simulation of turbulent mixing by Rayleigh–Taylor instability,” Phys. D: Nonlinear Phenom. 12 (1-3), 32–44 (1984). https://doi.org/10.1016/0167-2789(84)90512-8

    Article  Google Scholar 

  28. S. Z. Belen’kii and E. S. Fradkin, “Theory of turbulent mixing,” Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 29, 207–238 (1965).

    Google Scholar 

  29. K. I. Read, “Experimental investigation for turbulent mixing by Rayleigh–Talor instability,” Phys. D: Nonlinear Phenom. 12 (1-3), 45–58 (1984). https://doi.org/10.1016/0167-2789(84)90513-X

    Article  Google Scholar 

  30. Yu. A. Kucherenko, S. I. Balabin, N. N. Anuchina, V. I. Volkov, R. I. Ardashova, O. E. Kozelkov, A. V. Dulov, and L. A. Romanov, “Experimental investigation into periodic perturbation development against turbulent mixing about the contact boundary of heterodense liquids,” in Proc. 7th Int. Workshop on the Physics of Compressible Turbulent Mixing (WPCTM7) (St. Petersburg, 1999), pp. 75–79.

  31. A. N. Aleshin, E. V. Lazareva, S. G. Zaitsev, V. B. Rozanov, E. G. Gamalii, and I. G. Lebo, “A study of linear, nonlinear and transition stages of Richtmyer–Meshkov instability,” Dokl. Math. 35 (2), 177–180 (1990).

    Google Scholar 

  32. Y. Zhou, “Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I,” Phys. Rep. 720–722, 1–136 (2017). https://doi.org/10.1016/j.physrep.2017.07.005

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Zhou, “Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II,” Phys. Rep. 723–725, 1–160 (2017). https://doi.org/10.1016/j.physrep.2017.07.008

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y.-N. Young, and M. Zingale, “A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration,” Phys. Fluids 16, 1668–1693 (2004). https://doi.org/10.1063/1.1688328

    Article  MATH  Google Scholar 

  35. B. Thornber, J. Griffond, O. Poujade, N. Attal, H. Varshochi, P. Bigdelou, P. Ramaprabhu, B. Olson, J. Greenough, Y. Zhou, O. Schilling, K. A. Garside, R. J. R. Williams, C. A. Batha, P. A. Kuchugov, M. E. La-donkina, V. F. Tishkin, N. V. Zmitrenko, V. B. Rozanov, and D. L. Youngs, “Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: The θ-group collaboration,” Phys. Fluids 29, 105107 (2017). https://doi.org/10.1063/1.4993464

    Article  Google Scholar 

  36. A. A. Tyaktev, A. V. Pavlenko., N. B. Anikin, Yu. A. Piskunov, I. L. Bugaenko, A. M. Andreev, and S. S. Mokrushin, Experimental Study of the Characteristics of the Zone of Turbulent Mixing of Gaseous Media Caused by the RayleighTaylor Instability at Atwood Numbers 0.2 and 0.8 (RFYaTs-VNIITF, Snezhinsk, Chelyabinsk oblast, 2015) [in Russian].

  37. J. W. Jacobs, M. A. Jones, and C. E. Niederhaus, “Experimental Studies of RichtmyerMeshkov Instability,” in Proc. 5th Int. Workshop on the Physics of Compressible Turbulent Mixing (WPCTM5) (Stony Brook, NY, July 1995), pp. 195‑202.

  38. N. V. Nevmerzhitskii, Hydrodynamic Instabilities and Turbulent Mixing of Substances. Laboratory Simulation, Ed. by A. L. Mikhailov (RFYaTs-VNIIEF, Sarov, Nizhny Novgorod oblast, 2018) [in Russian].

  39. L. D. Landau and E. M. Lifschitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon Press, New York, 1987).

  40. K. V. Vyaznikov, V. F. Tishkin, and A. P. Favorski, “Construction of monotone high resolution difference schemes for hyperbolic systems,” Mat. Model. 1 (5), 95–120 (1989).

    MathSciNet  MATH  Google Scholar 

  41. V. F. Tishkin, V. V. Nikishin, I. V. Popov, and A. P. Favorski, “Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability,” Mat. Model. 7 (5), 15–25 (1995).

    Google Scholar 

  42. I. G. Lebo and V. F. Tishkin, Investigation of Hydrodynamic Instability in Problems of Laser Thermonuclear Fusion by Mathematical Modeling Methods (Fizmatlit, Moscow, 2006) {in Russian].

  43. M. N. Mikhailovskaya and B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations,” Comput. Math. Math. Phys. 52 (4), 578‑600 (2012). https://doi.org/10.1134/S0965542512040124

    Article  MathSciNet  MATH  Google Scholar 

  44. M. D. Bragin and B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations,” Appl. Numer. Math. 151, 229–245 (2020). https://doi.org/10.1016/j.apnum.2020.01.005

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu. V. Yanilkin, S. P. Belyaev, Yu. A. Bondarenko, E. S. Gavrilova, E. A. Goncharov, A. D. Gorbenko, A. V. Gorodnichev, E. V. Gubkov, A. R. Guzhova, L. I. Degtyarenko, G. V. Zharova, V. Yu. Kolobyanin, V. N. Sofronov, A. L. Stadnik, N. A. Khovrin, O. N. Chernyshova, I. N. Chistyakova, and V. N. Shemyakov, “Eulerian numerical techniques EGAK and TREK for simulation of multidimensional multimaterial flows,” Tr. RFYaTs-VNIIEF, No. 12, 54–65 (2008).

    Google Scholar 

  46. Yu. V. Yanilkin, “Numerical study of the interrelation of turbulent mixing area and local disturbances of interface in the gravitational turbulent mixing problem,” Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 3, 3–18 (2019).

    Google Scholar 

  47. V. P. Statsenko, Yu. V. Yanilkin, O. G. Sin’kova, and A. L. Stadnik, “The degree of homogeneous mixing according to the results of 3D numerical calculations of gravitational turbulent mixing,” Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., Nos. 2–3, 32–40 (2007).

Download references

ACKNOWLEDGMENTS

The multidimensional numerical calculations were carried out on the equipment installed in the Supercomputer Center for Collective Use of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences and Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). The authors thank the staff of these centers.

Funding

This study was supported as part of the scientific program of the National Center for Physics and Mathematics, Sarov, Nizhny Novgorod oblast.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. D. Bragin, N. V. Zmitrenko or P. A. Kuchugov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, M.D., Gus’kov, S.Y., Zmitrenko, N.V. et al. Experimental and Numerical Investigation of the Dynamics of Development of Rayleigh–Taylor Instability at Atwood Numbers Close to Unity. Math Models Comput Simul 15, 660–676 (2023). https://doi.org/10.1134/S2070048223040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223040038

Keywords:

Navigation