Skip to main content
Log in

Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We report an experimental investigation of the influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods (DRs), which is important for their polarization-based practical applications. By covering the single DRs with N-type semiconductor indium tin oxide (ITO) nanoparticles, the surface of single DRs is charged by ITO through interfacial electron transfer. This is confirmed by the experimental observations of the reduced photoluminescence intensities and lifetimes as well as the suppressing blinking. It is found that the full width at half maximum of histogram of polarization degrees of the single DRs is broadened from 0.24 (on glass) to 0.41 (in ITO). In order to explain the exprimental results, the band-edge exciton fine structure of single DRs is calculated by taking into account the sample parameters, the emission polarization, and the surface charges. The calculation results show that the level ordering of the emitting states determines the polarization degrees tending to increase or decrease under the influence of surface electrons. The surface electrons can induce an increase in the spacing between the emitting levels to change the populations and thus change the polarization degrees. In addition, different numbers of surface electrons may randomly distribute on the long CdSe/CdS rods, leading to the heterogeneous influences on the single DRs causing the broadening of polarization degrees also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. G. Xiao, R. A. Kerner, L. F. Zhao, N. L. Tran, K. M. Lee, T. W. Koh, G. D. Scholes, and B. P. Rand, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics 11(2), 108 (2017)

    Article  ADS  Google Scholar 

  2. D. Han, M. Imran, M. Zhang, S. Chang, X. Wu, X. Zhang, J. Tang, M. Wang, S. Ali, X. Li, G. Yu, J. Han, L. Wang, B. Zou, and H. Zhong, Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process, ACS Nano 12(8), 8808 (2018)

    Article  Google Scholar 

  3. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots, Science 290(5490), 314 (2000)

    Article  ADS  Google Scholar 

  4. D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, Photodetectors based on treated CdSe quantumdot films, Appl. Phys. Lett. 87(21), 213505 (2005)

    Article  ADS  Google Scholar 

  5. G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)

    Article  Google Scholar 

  6. W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, Iodide management in formamidiniumlead-halide-based perovskite layers for efficient solar cells, Science 356(6345), 1376 (2017)

    Article  ADS  Google Scholar 

  7. W. D. Sheng, M. Korkusinski, A. D. Guclu, M. Zielinski, P. Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Electronic and optical properties of semiconductor and graphene quantum dots, Front. Phys. 7(3), 328 (2012)

    Article  Google Scholar 

  8. Y. Y. Fan, H. L. Liu, R. C. Han, L. Huang, H. Shi, Y. L. Sha, and Y. Q. Jiang, Extremely high brightness from polymer-encapsulated quantum dots for two-photon cellular and deep-tissue imaging, Sci. Rep. 5(1), 9908 (2015)

    Article  ADS  Google Scholar 

  9. E. M. Thomas, S. Ghimire, R. Kohara, A. N. Anil, K. Yuyama, Y. Takano, K. G. Thomas, and V. Biju, Blinking suppression in highly excited CdSe/ZnS quantum dots by electron transfer under large positive Gibbs (free) energy change, ACS Nano 12(9), 9060 (2018)

    Article  Google Scholar 

  10. G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, and G. P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502 (2017)

    Article  Google Scholar 

  11. H. Huang, L. Polavarapu, J. A. Sichert, A. S. Susha, A. S. Urban, and A. L. Rogach, Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications, NPG Asia Mater. 8(11), e328 (2016)

    Article  Google Scholar 

  12. H. Yuan, E. Debroye, E. Bladt, G. Lu, M. Keshavarz, K. P. F. Janssen, M. B. J. Roeffaers, S. Bals, E. H. Sargent, and J. Hofkens, Imaging heterogeneously distributed photo-active traps in perovskite single crystals, Adv. Mater. 30(13), 1705494 (2018)

    Article  Google Scholar 

  13. Q. S. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, All-inorganic perovskite nanocrystal scintillators, Nature 561(7721), 88 (2018)

    Article  ADS  Google Scholar 

  14. Q. B. Zeng, S. Chen, L. You, and R. Lu, Transport through a quantum dot coupled to two Majorana bound states, Front. Phys. 12(4), 127302 (2017)

    Article  Google Scholar 

  15. A. Sitt, I. Hadar, and U. Banin, Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods, Nano Today 8(5), 494 (2013)

    Article  Google Scholar 

  16. T. Kodanek, H. M. Banbela, S. Naskar, P. Adel, N. C. Bigall, and D. Dorfs, Phase transfer of 1- and 2-dimensional Cd-based nanocrystals, Nanoscale 7(45), 19300 (2015)

    Article  ADS  Google Scholar 

  17. D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, and H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality, Nano Lett. 3(12), 1677 (2003)

    Article  ADS  Google Scholar 

  18. I. Coropceanu, A. Rossinelli, J. R. Caram, F. S. Freyria, and M. G. Bawendi, Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer, ACS Nano 10(3), 3295 (2016)

    Article  Google Scholar 

  19. M. Saba, S. Minniberger, F. Quochi, J. Roither, M. Marceddu, A. Gocalinska, M. V. Kovalenko, D. V. Talapin, W. Heiss, A. Mura, and G. Bongiovanni, Excitonexciton interaction and optical gain in colloidal CdSe/CdS dot/rod nanocrystals, Adv. Mater. 21(48), 4942 (2009)

    Article  Google Scholar 

  20. C. D. Sonnichsen, T. Kipp, X. Tang, and P. Kambhampati, Efficient optical gain in CdSe/CdS dots-in-rods, ACS Photonics 6(2), 382 (2019)

    Article  Google Scholar 

  21. Y. Gao, V. D. Ta, X. Zhao, Y. Wang, R. Chen, E. Mutlugun, K. E. Fong, S. T. Tan, C. Dang, X. W. Sun, H. Sun, and H. V. Demir, Observation of polarized gain from aligned colloidal nanorods, Nanoscale 7(15), 6481 (2015)

    Article  ADS  Google Scholar 

  22. M. Allione, A. Ballester, H. B. Li, A. Comin, J. L. Movilla, J. I. Climente, L. Manna, and I. Moreels, Twophoton-induced blue shift of core and shell optical transitions in colloidal CdSe/CdS quasi-type II quantum rods, ACS Nano 7(3), 2443 (2013)

    Article  Google Scholar 

  23. A. Shabaev and A. L. Efros, 1D exciton spectroscopy of semiconductor nanorods, Nano Lett. 4(10), 1821 (2004)

    Article  ADS  Google Scholar 

  24. N. Le Thomas, E. Herz, O. Schops, U. Woggon, and M. V. Artemyev, Exciton fine structure in single CdSe nanorods, Phys. Rev. Lett. 94(1), 016803 (2005)

    Article  ADS  Google Scholar 

  25. Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernee, P. Tamarat, and B. Lounis, Efficient biexciton emission in elongated CdSe/ZnS nanocrystals, Nano Lett. 11(10), 4370 (2011)

    Article  ADS  Google Scholar 

  26. S. Vezzoli, M. Manceau, G. Lemenager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, and A. Bramati, Exciton fine structure of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature, ACS Nano 9(8), 7992 (2015)

    Article  Google Scholar 

  27. J. Planelles, F. Rajadell, and J. I. Climente, Electronic origin of linearly polarized emission in CdSe/CdS dot-inrod heterostructures, J. Phys. Chem. C 120(48), 27724 (2016)

    Article  Google Scholar 

  28. I. Hadar, G. B. Hitin, A. Sitt, A. Faust, and U. Banin, Polarization properties of semiconductor nanorod heterostructures: From single particles to the ensemble, J. Phys. Chem. Lett. 4(3), 502 (2013)

    Article  Google Scholar 

  29. B. T. Diroll, A. Koschitzky, and C. B. Murray, Tunable optical anisotropy of seeded CdSe/CdS nanorods, J. Phys. Chem. Lett. 5(1), 85 (2014)

    Article  Google Scholar 

  30. I. Angeloni, W. Raja, A. Polovitsyn, F. De Donato, R. P. Zaccaria, and I. Moreels, Band-edge oscillator strength of colloidal CdSe/CdS dot-in-rods: Comparison of absorption and time-resolved fluorescence spectroscopy, Nanoscale 9(14), 4730 (2017)

    Article  Google Scholar 

  31. J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, Monitoring surface charge movement in single elongated semiconductor nanocrystals, Phys. Rev. Lett. 93(16), 167402 (2004)

    Article  ADS  Google Scholar 

  32. J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures, Phys. Rev. B 72(20), 205339 (2005)

    Article  ADS  Google Scholar 

  33. S. H. Lohmann, C. Strelow, A. Mews, and T. Kippe, Surface charges on CdSe-dot/CdS-rod nanocrystals: Measuring and modeling the diffusion of exciton-fluorescence rates and energies, ACS Nano 11(12), 12185 (2017)

    Article  Google Scholar 

  34. S. H. Lohmann, P. Harder, F. Bourier, C. Strelow, A. Mews, and T. Kipp, Influence of interface-driven strain on the spectral diffusion properties of core/shell CdSe/CdS dot/rod nanoparticles, J. Phys. Chem. C 123(8), 5099 (2019)

    Article  Google Scholar 

  35. M. J. Fernée, B. Littleton, T. Plakhotnik, H. Rubinsztein-Dunlop, D. E. Gomez, and P. Mulvaney, Charge hopping revealed by jitter correlations in the photoluminescence spectra of single CdSe nanocrystals, Phys. Rev. B 81(15), 155307 (2010)

    Article  ADS  Google Scholar 

  36. M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, Spontaneous spectral diffusion in CdSe quantum dots, J. Phys. Chem. Lett. 3(12), 1716 (2012)

    Article  Google Scholar 

  37. K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, Polarization-driven stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles, Nano Lett. 10(5), 1754 (2010)

    Article  ADS  Google Scholar 

  38. T. Ihara and Y. Kanemitsu, Spectral diffusion of neutral and charged exciton transitions in single CdSe/ZnS nanocrystals due to quantum-confined stark effect, Phys. Rev. B 90(19), 195302 (2014)

    Article  ADS  Google Scholar 

  39. D. Braam, A. Molleken, G. M. Prinz, C. Notthoff, M. Geller, and A. Lorke, Role of the ligand layer for photoluminescence spectral diffusion of CdSe/ZnS nanoparticles, Phys. Rev. B 88(12), 125302 (2013)

    Article  ADS  Google Scholar 

  40. S. E. Yalcin, B. Q. Yang, J. A. Labastide, and M. D. Barnes, Electrostatic force microscopy and spectral studies of electron attachment to single quantum dots on indium tin oxide substrates, J. Phys. Chem. C 116(29), 15847 (2012)

    Article  Google Scholar 

  41. S. Y. Jin, N. H. Song, and T. Q. Lian, Suppressed blinking dynamics of single QDs on ITO, ACS Nano 4(3), 1545 (2010)

    Article  Google Scholar 

  42. H. Cheng, C. Yuan, J. Wang, T. Lin, J. Shen, Y. Hung, J. Tang, and F. Tseng, Modification of photon emission statistics from single colloidal CdSe quantum dots by conductive materials, J. Phys. Chem. C 118(31), 18126 (2014)

    Article  Google Scholar 

  43. B. Li, G. Zhang, Z. Wang, Z. Li, R. Chen, C. Qin, Y. Gao, L. Xiao, and S. Jia, Suppressing the fluorescence blinking of single quantum dots encased in N-type semiconductor nanoparticles, Sci. Rep. 6(1), 32662 (2016)

    Article  ADS  Google Scholar 

  44. Z. J. Li, G. F. Zhang, B. Li, R. Y. Chen, C. B. Qin, Y. Gao, L. T. Xiao, and S. T. Jia, Enhanced biexciton emission from single quantum dots encased in N-type semiconductor nanoparticles, Appl. Phys. Lett. 111(15), 153106 (2017)

    Article  ADS  Google Scholar 

  45. K. T. Early, K. D. McCarthy, M. Y. Odoi, P. K. Sudeep, T. Emrick, and M. D. Barnes, Linear dipole behavior in single CdSe-oligo(phenylene vinylene) nanostructures, ACS Nano 3(2), 453 (2009)

    Article  Google Scholar 

  46. G. F. Zhang, Y. G. Peng, H. Q. Xie, B. Li, Z. J. Li, C. G. Yang, W. L. Guo, C. B. Qin, R. Y. Chen, Y. Gao, Y. J. Zheng, L. T. Xiao, and S. T. Jia, Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films, Front. Phys. 14(2), 23605 (2019)

    Article  Google Scholar 

  47. A. P. Litvin, I. V. Martynenko, F. Purcell-Milton, A. V. Baranov, A. V. Fedorov, and Y. K. Gun'ko, Colloidal quantum dots for optoelectronics, J. Mater. Chem. A 5(26), 13252 (2017)

    Article  Google Scholar 

  48. Y. Jiang, S. Cho, and M. Shim, Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays, J. Mater. Chem. C 6(11), 2618 (2018)

    Article  Google Scholar 

  49. L. Meng, C. Yang, J. Meng, Y. Wang, Y. Ge, Z. Shao, G. Zhang, A. L. Rogach, and H. Zhong, In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission, Nano Res. 12(6), 1411 (2019)

    Article  Google Scholar 

  50. T. Ihara, R. Sato, T. Teranishi, and Y. Kanemitsu, Delocalized and localized charged excitons in single CdSe/CdS dot-in-rods revealed by polarized photoluminescence blinking, Phys. Rev. B 90(3), 035309 (2014)

    Article  ADS  Google Scholar 

  51. F. Hu, B. Lv, C. Yin, C. Zhang, X. Wang, B. Lounis, and M. Xiao, Carrier multiplication in a single semiconductor nanocrystal, Phys. Rev. Lett. 116(10), 106404 (2016)

    Article  ADS  Google Scholar 

  52. G. C. Yuan, D. E. Gomez, N. Kirkwood, K. Boldt, and P. Mulvaney, Two mechanisms determine quantum dot blinking, ACS Nano 12(4), 3397 (2018)

    Article  Google Scholar 

  53. B. Li, H. Huang, G. Zhang, C. Yang, W. Guo, R. Chen, C. Qin, Y. Gao, V. P. Biju, A. L. Rogach, L. Xiao, and S. Jia, Excitons and biexciton dynamics in single CsPbBr3 perovskite quantum dots, J. Phys. Chem. Lett. 9(24), 6934 (2018)

    Article  Google Scholar 

  54. H. Yuan, E. Debroye, G. Caliandro, K. P. Janssen, J. van Loon, C. E. Kirschhock, J. A. Martens, J. Hofkens, and M. B. Roeffaers, Photoluminescence blinking of singlecrystal methylammonium lead iodide perovskite nanorods induced by surface traps, ACS Omega 1(1), 148 (2016)

    Article  Google Scholar 

  55. B. Li, G. Zhang, C. Yang, Z. Li, R. Chen, C. Qin, Y. Gao, H. Huang, L. Xiao, and S. Jia, Fast recognition of single quantum dots from high multi-exciton emission and clustering effects, Opt. Express 26(4), 4674 (2018)

    Article  ADS  Google Scholar 

  56. H. Zang, P. K. Routh, Y. Huang, J. S. Chen, E. Sutter, P. Sutter, and M. Cotlet, Nonradiative energy transfer from individual CdSe/ZnS quantum dots to single-layer and few-layer tin disulfide, ACS Nano 10(4), 4790 (2016)

    Article  Google Scholar 

  57. W. He, C. Qin, Z. Qiao, Y. Gong, X. Zhang, G. Zhang, R. Chen, Y. Gao, L. Xiao, and S. Jia, In situ manipulation of fluorescence resonance energy transfer between quantum dots and monolayer graphene oxide by laser irradiation, Nanoscale 11(3), 1236 (2019)

    Article  Google Scholar 

  58. C. Lethiec, J. Laverdant, H. Vallon, C. Javaux, B. Dubertret, J. M. Frigerio, C. Schwob, L. Coolen, and A. Maitre, Measurement of three-dimensional dipole orientation of a single fluorescent nanoemitter by emission polarization analysis, Phys. Rev. X 4(2), 021037 (2014)

    Google Scholar 

  59. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B 54(7), 4843 (1996)

    Article  ADS  Google Scholar 

  60. A. Sihvola, Dielectric polarization and particle shape effects, J. Nanomater. 2007, 45090 (2007)

    Article  Google Scholar 

  61. J. S. Kamal, R. Gomes, Z. Hens, M. Karvar, K. Neyts, S. Compernolle, and F. Vanhaecke, Direct determination of absorption anisotropy in colloidal quantum rods, Phys. Rev. B 85(3), 035126 (2012)

    Article  ADS  Google Scholar 

  62. S. L. Chuang and C. S. Chang, K · P method for strained Wurtzite semiconductors, Phys. Rev. B 54(4), 2491 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  63. L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, and L. Manna, Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach, Nano Lett. 7(10), 2942 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project was sponsored by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61527824, 61675119, 11434007, 61875109, and 61605104), PCSIRT (Grant No. IRT 17R70), 1331KSC and 111 project (Grant No. D18001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Feng Zhang, Yong-Gang Peng or Lian-Tuan Xiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GF., Yang, CG., Ge, Y. et al. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods. Front. Phys. 14, 63601 (2019). https://doi.org/10.1007/s11467-019-0916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0916-1

Keywords

Navigation