Skip to main content
Log in

Topological gapless matters in three-dimensional ultracold atomic gases

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Three-dimensional topological gapless matters with gapless degeneracies protected by a topological invariant defined over a closed manifold in momentum space have attracted considerable interest in various fields ranging from condensed matter materials to ultracold atomic gases. As a highly controllable and disorder free system, ultracold atomic gases provide a versatile platform to simulate topological gapless matters. Here, the current progress in studies of topological gapless phenomena in three-dimensional cold atom systems is summarized in the review. It is mainly focused on Weyl points, structured (type-II) Weyl points, Dirac points, nodal rings and Weyl exceptional rings in cold atoms. Since interactions in cold atoms can be controlled via Feshbach resonances, the progress in both superfluids for attractive interactions and non-interacting cold atom gases is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, The quantum theory of the electron, Proc. R. Soc. Lond. A 117(778), 610 (1928)

    Article  ADS  MATH  Google Scholar 

  2. H. Weyl, Elektron und gravitation (I), Z. Phys. 56(5–6), 330 (1929)

    Article  ADS  MATH  Google Scholar 

  3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  4. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(2), 407 (2011)

    Article  ADS  Google Scholar 

  5. C. Herring, Accidental degeneracy in the energy bands of crystals, Phys. Rev. 52(4), 365 (1937)

    Article  ADS  Google Scholar 

  6. G. Volovik, Zeros in the fermion spectrum in superfluid systems as diabolical points, JETP Lett. 46(2), 98 (1987)

    ADS  Google Scholar 

  7. G. E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford, 2003

    Google Scholar 

  8. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)

    Article  ADS  Google Scholar 

  9. K. Y. Yang, Y. M. Lu, and Y. Ran, Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B 84(7), 075129 (2011)

    Article  ADS  Google Scholar 

  10. A. A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett. 107(12), 127205 (2011)

    Article  ADS  Google Scholar 

  11. G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett. 107(18), 186806 (2011)

    Article  ADS  Google Scholar 

  12. C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Multi-Weyl topological semimetals stabilized by point group symmetry, Phys. Rev. Lett. 108(26), 266802 (2012)

    Article  ADS  Google Scholar 

  13. S. A. Yang, H. Pan, and F. Zhang, Dirac and Weyl superconductors in three dimensions, Phys. Rev. Lett. 113(4), 046401 (2014)

    Article  ADS  Google Scholar 

  14. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transitionmetal monophosphides, Phys. Rev. X 5(1), 011029 (2015)

    Google Scholar 

  15. H. Ishizuka, T. Hayata, M. Ueda, and N. Nagaosa, Emergent electromagnetic induction and adiabatic charge pumping in noncentrosymmetric Weyl Semimetals, Phys. Rev. Lett. 117(21), 216601 (2016)

    Article  ADS  Google Scholar 

  16. C. Fang, L. Lu, J. Liu, and L. Fu, Topological semimetals with helicoid surface states, Nat. Phys. 12(10), 936 (2016)

    Article  Google Scholar 

  17. M. Gong, S. Tewari, and C. Zhang, BCS-BEC crossover and topological phase transition in 3D spin-orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 107(19), 195303 (2011)

    Article  ADS  Google Scholar 

  18. J. H. Jiang, Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes, Phys. Rev. A 85(3), 033640 (2012)

    Article  ADS  Google Scholar 

  19. B. M. Anderson, G. Juzeliunas, V. M. Galitski, and I. B. Spielman, Synthetic 3D spin-orbit coupling, Phys. Rev. Lett. 108(23), 235301 (2012)

    Article  ADS  Google Scholar 

  20. Y. Xu, R. L. Chu, and C. Zhang, Anisotropic Weyl fermions from the quasiparticle excitation spectrum of a 3D Fulde-Ferrell superfluid, Phys. Rev. Lett. 112(13), 136402 (2014)

    Article  ADS  Google Scholar 

  21. Y. Xu and C. Zhang, Topological Fulde-Ferrell superfluids of a spin-orbit coupled Fermi gas, Int. J. Mod. Phys. B 29(01), 1530001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. B. Liu, X. Li, L. Yin, and W. V. Liu, Weyl superfluidity in a three-dimensional dipolar Fermi gas, Phys. Rev. Lett. 114(4), 045302 (2015)

    Article  ADS  Google Scholar 

  23. S. Ganeshan, and S. Das Sarma, Constructing a Weyl semimetal by stacking one-dimensional topological phases, Phys. Rev. B 91(12), 125438 (2015)

    Article  ADS  Google Scholar 

  24. X. Li and S. D. Sarma, Exotic topological density waves in cold atomic Rydberg-dressed fermions, Nat. Commun. 6(1), 7137 (2015)

    Article  ADS  Google Scholar 

  25. T. Dubček, C. J. Kennedy, L. Lu, W. Ketterle, M. Soljačić, and H. Buljan, Weyl points in three-dimensional optical lattices: Synthetic magnetic monopoles in momentum space, Phys. Rev. Lett. 114(22), 225301 (2015)

    Article  ADS  Google Scholar 

  26. Y. Xu, F. Zhang, and C. Zhang, Structured Weyl points in spin-orbit coupled fermionic superfluids, Phys. Rev. Lett. 115(26), 265304 (2015)

    Article  ADS  Google Scholar 

  27. W. Y. He, S. Zhang, and K. T. Law, Realization and detection of Weyl semimetals and the chiral anomaly in cold atomic systems, Phys. Rev. A 94(1), 013606 (2016)

    Article  ADS  Google Scholar 

  28. Y.-Q. Wang and X.-J. Liu, Predicted scaling behavior of Bloch oscillation in Weyl semimetals, Phys. Rev. A 94, 031603(R) (2016)

    Article  ADS  Google Scholar 

  29. Y. Xu and L. M. Duan, Type-II Weyl points in three-dimensional cold-atom optical lattices, Phys. Rev. A 94(5), 053619 (2016)

    Article  ADS  Google Scholar 

  30. S. V. Syzranov, M. L. Wall, B. Zhu, V. Gurarie, and A. M. Rey, Emergent Weyl excitations in systems of polar particles, Nat. Commun. 7(1), 13543 (2016)

    Article  ADS  Google Scholar 

  31. L. Lepori, I. C. Fulga, A. Trombettoni, and M. Burrello, PT-invariant Weyl semimetals in gauge-symmetric systems, Phys. Rev. B 94(8), 085107 (2016)

    Article  ADS  Google Scholar 

  32. L. Lepori, I. C. Fulga, A. Trombettoni, and M. Burrello, Double Weyl points and Fermi arcs of topological semimetals in non-Abelian gauge potentials, Phys. Rev. A 94(5), 053633 (2016)

    Article  ADS  Google Scholar 

  33. X. Y. Mai, D. W. Zhang, Z. Li, and S. L. Zhu, Exploring topological double-Weyl semimetals with cold atoms in optical lattices, Phys. Rev. A 95(6), 063616 (2017)

    Article  ADS  Google Scholar 

  34. L. J. Lang, S. L. Zhang, K. T. Law, and Q. Zhou, Weyl points and topological nodal superfluids in a face-centered-cubic optical lattice, Phys. Rev. B 96(3), 035145 (2017)

    Article  ADS  Google Scholar 

  35. B.-Z. Wang, Y.-H. Lu, W. Sun, S. Chen, Y. J. Deng, and X.-J. Liu, Dirac-, Rashba-, and Weyl-type spin-orbit couplings: Toward experimental realization in ultracold atoms, Phys. Rev. A 97, 011605(R) (2018)

    Article  ADS  Google Scholar 

  36. Y. B. Yang, L. M. Duan, and Y. Xu, Continuously tunable topological pump in high-dimensional cold atomic gases, Phys. Rev. B 98(16), 165128 (2018)

    Article  ADS  Google Scholar 

  37. X. F. Zhou, X. W. Luo, G. Chen, S. T. Jia, and C. Zhang, Rashba and Weyl spin-orbit coupling in an optical lattice clock, arXiv: 1804.09282 (2018)

    Google Scholar 

  38. Y. Xu and Y. Hu, Scheme to equilibrate the quantized Hall response of topological systems from coherent dynamics, arXiv: 1807.09732 (2018)

    Google Scholar 

  39. L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, Weyl points and line nodes in gyroid photonic crystals, Nat. Photonics 7(4), 294 (2013)

    Article  ADS  Google Scholar 

  40. M. Xiao, W. J. Chen, W. Y. He, and C. T. Chan, Synthetic gauge flux and Weyl points in acoustic systems, Nat. Phys. 11(11), 920 (2015)

    Article  Google Scholar 

  41. D. Z. Rocklin, B. G. Chen, M. Falk, V. Vitelli, and T. C. Lubensky, Mechanical Weyl modes in topological Maxwell lattices, Phys. Rev. Lett. 116(13), 135503 (2016)

    Article  ADS  Google Scholar 

  42. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)

    Google Scholar 

  43. S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349(6248), 613 (2015)

    Article  ADS  Google Scholar 

  44. L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, Experimental observation of Weyl points, Science 349(6248), 622 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. W. J. Chen, M. Xiao, and C. T. Chan, Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states, Nat. Commun. 7(1), 13038 (2016)

    Article  ADS  Google Scholar 

  46. B. Yang, Q. H. Guo, B. Tremain, R. J. Liu, L. E. Barr, Q. H. Yan, W. L. Gao, H. C. Liu, Y. J. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, Ideal Weyl points and helicoid surface states in artificial photonic crystal structures, Science 359(6379), 1013 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature 527(7579), 495 (2015)

    Article  ADS  Google Scholar 

  48. E. J. Bergholtz, Z. Liu, M. Trescher, R. Moessner, and M. Udagawa, Topology and interactions in a frustrated slab: Tuning from Weyl semimetals to C > 1 fractional Chern insulators, Phys. Rev. Lett. 114(1), 016806 (2015)

    Article  ADS  Google Scholar 

  49. Z. Yu, Y. Yao, and S. A. Yang, Predicted unusual magnetoresponse in type-II Weyl semimetals, Phys. Rev. Lett. 117(7), 077202 (2016)

    Article  ADS  Google Scholar 

  50. M. Udagawa and E. J. Bergholtz, Field-selective anomaly and chiral mode reversal in type-II Weyl materials, Phys. Rev. Lett. 117(8), 086401 (2016)

    Article  ADS  Google Scholar 

  51. T. E. O’Brien, M. Diez, and C. W. J. Beenakker, Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal, Phys. Rev. Lett. 116(23), 236401 (2016)

    Article  ADS  Google Scholar 

  52. A. A. Zyuzin and R. P. Tiwari, Intrinsic anomalous Hall effect in type-II Weyl semimetals, JETP Lett. 103(11), 717 (2016)

    Article  ADS  Google Scholar 

  53. K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen, and S. Zhou, Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2, Nat. Phys. 12(12), 1105 (2016)

    Article  Google Scholar 

  54. L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M. T. Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N. Trivedi, and A. Kaminski, Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2, Nat. Mater. 15(11), 1155 (2016)

    Article  ADS  Google Scholar 

  55. A. Liang, J. W. Huang, S. M. Nie, Y. Ding, Q. Gao, et al., Electronic evidence for type II Weyl semimetal state in MoTe2, arXiv: 1604.01706 (2016)

    Google Scholar 

  56. A. Tamai, Q. S. Wu, I. Cucchi, F. Y. Bruno, S. Riccò, T. K. Kim, M. Hoesch, C. Barreteau, E. Giannini, C. Besnard, A. A. Soluyanov, and F. Baumberger, Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2, Phys. Rev. X 6(3), 031021 (2016)

    Google Scholar 

  57. S. Y. Xu, N. Alidoust, G. Q. Chang, H. Lu, B Singh, I. Belopolski, et al., Discovery of Lorentz-violating type II Weyl fermions in LaAlGe, Sci. Adv. 3(6), e1603266 (2017)

    Article  ADS  Google Scholar 

  58. J. Jiang, Z. K. Liu, Y. Sun, H. F. Yang, C. R. Rajamathi, Y. P. Qi, L. X. Yang, C. Chen, H. Peng, C. C. Hwang, S. Z. Sun, S. K. Mo, I. Vobornik, J. Fujii, S. S. P. Parkin, C. Felser, B. H. Yan, and Y. L. Chen, Signature of type-II Weyl semimetal phase in MoTe2, Nat. Commun. 8, 13973 (2017)

    Article  ADS  Google Scholar 

  59. A. Liang, J. W. Huang, S. M. Nie, Y. Ding, Q. Gao, et al., Electronic evidence for type II Weyl semimetal state in MoTe2, arXiv: 1604.01706 (2016)

    Google Scholar 

  60. N. Xu, Z. J. Wang, A. P. Weber, A. Magrez, P. Bugnon, et al., Discovery of Weyl semimetal state violating Lorentz invariance in MoTe2, arXiv: 1604.02116 (2016)

    Google Scholar 

  61. F. Y. Bruno, A. Tamai, Q. S. Wu, I. Cucchi, C. Barreteau, A. de la Torre, S. McKeown Walker, S. Riccò, Z. Wang, T. K. Kim, M. Hoesch, M. Shi, N. C. Plumb, E. Giannini, A. A. Soluyanov, and F. Baumberger, Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2, Phys. Rev. B 94, 121112(R) (2016)

    Article  ADS  Google Scholar 

  62. J. Noh, S. Huang, D. Leykam, Y. D. Chong, K. P. Chen, and M. C. Rechtsman, Experimental observation of optical Weyl points and Fermi arc-like surface states, Nat. Phys. 13(6), 611 (2017)

    Article  Google Scholar 

  63. B. Yang, Q. H. Guo, B. Tremain, L. E. Barr, W. L. Gao, H. C. Liu, B. Béri, Y. J. Xiang, D. Y. Fan, A. P. Hibbins, and S. Zhang, Direct observation of topological surface-state arcs in photonic metamaterials, Nat. Commun. 8(1), 97 (2017)

    Article  ADS  Google Scholar 

  64. A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B 84(23), 235126 (2011)

    Article  ADS  Google Scholar 

  65. C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line semimetals, Chin. Phys. B 25(11), 117106 (2016)

    Article  ADS  Google Scholar 

  66. Y. K. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115(3), 036806 (2015)

    Article  ADS  Google Scholar 

  67. L. K. Lim and R. Moessner, Pseudospin vortex ring with a nodal line in three dimensions, Phys. Rev. Lett. 118(1), 016401 (2017)

    Article  ADS  Google Scholar 

  68. W. Chen, H. Z. Lu, and J. M. Hou, Topological semimetals with a double-helix nodal link, Phys. Rev. B 96(4), 041102 (2017)

    Article  ADS  Google Scholar 

  69. Z. B. Yan, R. Bi, H. T. Shen, L. Lu, S.-C. Zhang, and Z. Wang, Nodal-link semimetals, Phys. Rev. B 96, 041103(R) (2017)

    Article  ADS  Google Scholar 

  70. P. Y. Chang and C. H. Yee, Weyl-link semimetals, Phys. Rev. B 96(8), 081114 (2017)

    Article  ADS  Google Scholar 

  71. R. Bi, Z. Yan, L. Lu, and Z. Wang, Nodal-knot semimetals, Phys. Rev. B 96, 201305(R) (2017)

    Article  ADS  Google Scholar 

  72. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity-time symmetry in optics, Nat. Phys. 6(3), 192 (2010)

    Article  Google Scholar 

  73. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity-time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)

    Article  Google Scholar 

  74. L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Single-mode laser by parity-time symmetry breaking, Science 346(6212), 972 (2014)

    Article  ADS  Google Scholar 

  75. H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity-time-symmetric microring lasers, Science 346(6212), 975 (2014)

    Article  ADS  Google Scholar 

  76. J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S. Rudner, M. Segev, and A. Szameit, Observation of a topological transition in the bulk of a non-Hermitian system, Phys. Rev. Lett. 115(4), 040402 (2015)

    Article  ADS  Google Scholar 

  77. B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.L. Chua, J. D. Joannopoulos, and M. Soljačić, Spawning rings of exceptional points out of Dirac cones, Nature 525(7569), 354 (2015)

    Article  ADS  Google Scholar 

  78. T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, and E. A. Ostrovskaya, Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard, Nature 526(7574), 554 (2015)

    Article  ADS  Google Scholar 

  79. H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topological energy transfer in an optomechanical system with exceptional points, Nature 537(7618), 80 (2016)

    Article  ADS  Google Scholar 

  80. J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms, arXiv: 1608.05061 (2016)

    Google Scholar 

  81. S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Topologically protected bound states in photonic parity-time-symmetric crystals, Nat. Mater. 16(4), 433 (2017)

    Article  ADS  Google Scholar 

  82. W. J. Chen, S. K. Özdemir, G. M. Zhao, J. Wiersig, and L. Yang, Exceptional points enhance sensing in an optical microcavity, Nature 548(7666), 192 (2017)

    Article  ADS  Google Scholar 

  83. L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Observation of topological edge states in parity-time-symmetric quantum walks, Nat. Phys. 13(11), 1117 (2017)

    Article  Google Scholar 

  84. H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D. Joannopoulos, M. Soljačić, and B. Zhen, Observation of bulk Fermi arc and polarization half charge from paired exceptional points, Science 359(6379), 1009 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. A. Cerjan, S. Huang, K. P. Chen, Y. Chong, and M. C. Rechtsman, Experimental realization of a Weyl exceptional ring, arXiv: 1808.09541 (2018)

    Google Scholar 

  86. M. S. Rudner and L. S. Levitov, Topological transition in a non-Hermitian quantum walk, Phys. Rev. Lett. 102(6), 065703 (2009)

    Article  ADS  Google Scholar 

  87. K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Edge states and topological phases in non-Hermitian systems, Phys. Rev. B 84(20), 205128 (2011)

    Article  ADS  Google Scholar 

  88. C. E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A. İmamoĝlu, P. Zoller, and S. Diehl, Topology by dissipation, New J. Phys. 15(8), 085001 (2013)

    Article  ADS  Google Scholar 

  89. S. Malzard, C. Poli, and H. Schomerus, Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry, Phys. Rev. Lett. 115(20), 200402 (2015)

    Article  ADS  Google Scholar 

  90. T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116(13), 133903 (2016)

    Article  ADS  Google Scholar 

  91. Q. B. Zeng, B. Zhu, S. Chen, L. You, and R. Lü, Non-Hermitian Kitaev chain with complex on-site potentials, Phys. Rev. A 94(2), 022119 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  92. D. Leykam, K. Y. Bliokh, C. Huang, Y. Chong, and F. Nori, Edge modes, degeneracies, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118(4), 040401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  93. Y. Xu, S. T. Wang, and L. M. Duan, Weyl exceptional rings in a three-dimensional dissipative cold atomic gas, Phys. Rev. Lett. 118(4), 045701 (2017)

    Article  ADS  Google Scholar 

  94. H. Menke and M. M. Hirschmann, Topological quantum wires with balanced gain and loss, Phys. Rev. B 95(17), 174506 (2017)

    Article  ADS  Google Scholar 

  95. H. Shen, B. Zhen, and L. Fu, Topological band theory for Non-Hermitian Hamiltonians, Phys. Rev. Lett. 120(14), 146402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  96. S. Lieu, Topological phases in the non-Hermitian Su-Schrieffer-Heeger model, Phys. Rev. B 97(4), 045106 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  97. A. A. Zyuzin and A. Yu. Zyuzin, Flat band in disorder-driven non-Hermitian Weyl semimetals, Phys. Rev. B 97, 041203(R) (2018)

    Article  ADS  Google Scholar 

  98. C. Yin, H. Jiang, L. Li, R. Lü, and S. Chen, Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems, Phys. Rev. A 97(5), 052115 (2018)

    Article  ADS  Google Scholar 

  99. S. Yao and Z. Wang, Edge states and topological invariants of Non-Hermitian systems, Phys. Rev. Lett. 121(8), 086803 (2018)

    Article  ADS  Google Scholar 

  100. S. Yao and Z. Wang, Non-Hermitian Chern bands, Phys. Rev. Lett. 121(13), 136802 (2018)

    Article  ADS  Google Scholar 

  101. Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Topological phases of non-Hermitian systems, Phys. Rev. X 8(3), 031079 (2018)

    Google Scholar 

  102. A. Cerjan, M. Xiao, L. Yuan, and S. Fan, Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges, Phys. Rev. B 97(7), 075128 (2018)

    Article  ADS  Google Scholar 

  103. J. Carlström and E. J. Bergholtz, Exceptional links and twisted Fermi ribbons in non-Hermitian systems, Phys. Rev. A 98(4), 042114 (2018)

    Article  ADS  Google Scholar 

  104. M. S. Rudner, M. Levin, and L. S. Levitov, Survival, decay, and topological protection in non-Hermitian quantum transport, arXiv: 1605.07652 (2016)

    Google Scholar 

  105. K. Kawabata, S. Higashikawa, Z. Gong, Y. Ashida, and M. Ueda, arXiv: 1804.04676 (2018)

  106. K. Kawabata, K. Shiozaki, and M. Ueda, Anomalous helical edge states in a non-Hermitian Chern insulator, Phys. Rev. B 98, 165148 (2018)

    Article  ADS  Google Scholar 

  107. Y. Chen and H. Zhai, Hall conductance of a non-Hermitian Chern insulator, Phys. Rev. B 98, 245130 (2018)

    Article  ADS  Google Scholar 

  108. H. Wang, J. Ruan, and H. Zhang, Non-Hermitian nodal-line semimetals with an anomalous bulk-boundary correspondence, Phys. Rev. B 99, 075130 (2019)

    Article  ADS  Google Scholar 

  109. K. Luo, J. Feng, Y. X. Zhao, and R. Yu, Nodal manifolds bounded by exceptional points on non-Hermitian honeycomb lattices and electrical-circuit realizations, arXiv: 1810.09231 (2018)

    Google Scholar 

  110. Q. B. Zeng, Y. B. Yang, and Y. Xu, Topological non-Hermitian quasicrystals, arXiv: 1901.08060 (2019)

    Google Scholar 

  111. N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12(7), 639 (2016)

    Article  Google Scholar 

  112. D. W. Zhang, Y. Q. Zhu, Y. X. Zhao, H. Yan, and S. L. Zhu, Topological quantum matter with cold atoms, arXiv: 1810.09228 (2018)

    Book  Google Scholar 

  113. M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, Direct measurement of the Zak phase in topological Bloch bands, Nat. Phys. 9, 795 (2013)

    Article  Google Scholar 

  114. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111(18), 185301 (2013)

    Article  ADS  Google Scholar 

  115. H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Realizing the harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett. 111(18), 185302 (2013)

    Article  ADS  Google Scholar 

  116. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014)

    Article  ADS  Google Scholar 

  117. M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman, Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nat. Phys. 11(2), 162 (2015)

    Article  Google Scholar 

  118. N. Fläschner, B. Rem, M. Tarnowski, D. Vogel, D. S. Lühmann, K. Sengstock, and C. Weitenberg, Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science 352(6289), 1091 (2016)

    Article  ADS  Google Scholar 

  119. Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. J. Deng, S. Chen, X. J. Liu, and J. W. Pan, Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates, Science 354(6308), 83 (2016)

    Article  ADS  Google Scholar 

  120. W. Sun, B. Z. Wang, X. T. Xu, C. R. Yi, L. Zhang, Z. Wu, Y. J. Deng, X. J. Liu, S. Chen, and J. W. Pan, Highly controllable and robust 2D spin-orbit coupling for quantum gases, Phys. Rev. Lett. 121(15), 150401 (2018)

    Article  ADS  Google Scholar 

  121. S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Topological Thouless pumping of ultracold fermions, Nat. Phys. 12(4), 296 (2016)

    Article  Google Scholar 

  122. M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I. Bloch, A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice, Nat. Phys. 12(4), 350 (2016)

    Article  Google Scholar 

  123. M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and I. Bloch, Exploring 4D quantum Hall physics with a 2D topological charge pump, Nature 553(7686), 55 (2018)

    Article  ADS  Google Scholar 

  124. P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, Multi-component quantum gases in spin-dependent hexagonal lattices, Nat. Phys. 7(5), 434 (2011)

    Article  Google Scholar 

  125. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature 483(7389), 302 (2012)

    Article  ADS  Google Scholar 

  126. L. Huang, Z. Meng, P. Wang, P. Peng, S. L. Zhang, L. Chen, D. Li, Q. Zhou, and J. Zhang, Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases, Nat. Phys. 12(6), 540 (2016)

    Article  Google Scholar 

  127. Z. Meng, L. Huang, P. Peng, D. Li, L. C. Chen, Y. Xu, C. Zhang, P. Wang, and J. Zhang, Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional spin-orbit coupling, Phys. Rev. Lett. 117(23), 235304 (2016)

    Article  ADS  Google Scholar 

  128. X. T. Xu, C. R. Yi, B. Z. Wang, W. Sun, Y. Deng, X. J. Liu, S. Chen, and J. W. Pan, Precision mapping the topological bands of 2D spin-orbit coupling with microwave spin-injection spectroscopy, Sci. Bull. 63(22), 1464 (2018)

    Article  Google Scholar 

  129. S. Sugawa, F. S. Carcoba, A. R. Perry, Y. C. Yue, and I. B. Spielman, Second Chern number of a quantum-simulated non-Abelian Yang monopole, Science 360(6396), 1429 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  130. B. Song, C. He, S. Niu, L. Zhang, Z. J. Ren, X.J. Liu, and G. B. Jo, Observation of nodal-line semimetal with ultracold fermions in an optical lattice, arXiv: 1808.07428 (2018)

    Google Scholar 

  131. H. Hu, L. Dong, Y. Cao, H. Pu, and X. J. Liu, Gapless topological Fulde-Ferrell superfluidity induced by an in-plane Zeeman field, Phys. Rev. A 90(3), 033624 (2014)

    Article  ADS  Google Scholar 

  132. K. J. Seo, L. Han, and C. A. R. Sá de Melo, Emergence of Majorana and Dirac particles in ultracold fermions via tunable interactions, spin-orbit effects, and Zeeman fields, Phys. Rev. Lett. 109(10), 105303 (2012)

    Article  ADS  Google Scholar 

  133. Y. J. Lin, K. J. Garcia, and I. B. Spielman, Spin-orbitcoupled Bose-Einstein condensates, Nature 471(7336), 83 (2011)

    Article  ADS  Google Scholar 

  134. J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, B. Yan, G. S. Pan, B. Zhao, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate, Phys. Rev. Lett. 109(11), 115301 (2012)

    Article  ADS  Google Scholar 

  135. P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin-orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301 (2012)

    Article  ADS  Google Scholar 

  136. L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin-orbit coupled Fermi Gas, Phys. Rev. Lett. 109(9), 095302 (2012)

    Article  ADS  Google Scholar 

  137. C. L. Qu, C. Hamner, M. Gong, C. W. Zhang, and P. Engels, Observation of Zitterbewegung in a spin-orbitcoupled Bose-Einstein condensate, Phys. Rev. A 88, 021604(R) (2013)

    Article  ADS  Google Scholar 

  138. A. J. Olson, S.J. Wang, R. J. Niffenegger, C.H. Li, C. H. Greene, and Y. P. Chen, Tunable Landau-Zener transitions in a spin-orbit-coupled Bose-Einstein condensate, Phys. Rev. A 90(1), 013616 (2014)

    Article  ADS  Google Scholar 

  139. X. Luo, L. Wu, J. Chen, Q. Guan, K. Gao, Z.F. Xu, L. You, and R. Wang, Tunable atomic spin-orbit coupling synthesized with a modulating gradient magnetic field, Sci. Rep. 6(1), 18983 (2016)

    Article  ADS  Google Scholar 

  140. N. Q. Burdick, Y. J. Tang, and B. L. Lev, Long-lived spin-orbit-coupled degenerate dipolar Fermi gas, Phys. Rev. X 6(3), 031022 (2016)

    Google Scholar 

  141. B. Song, C. He, S. Zhang, E. Hajiyev, W. Huang, X.-J. Liu, and G.-B. Jo, Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms, Phys. Rev. A 94, 061604(R) (2016)

    Article  ADS  Google Scholar 

  142. J. Li, W. Huang, B. Shteynas, S. Burchesky, F. Ç. Top, E. Su, J. Lee, A. O. Jamison, and W. Ketterle, Spin-orbit coupling and spin textures in optical superlattices, Phys. Rev. Lett. 117(18), 185301 (2016)

    Article  ADS  Google Scholar 

  143. S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye, Spin-orbit-coupled fermions in an optical lattice clock, Nature 542(7639), 66 (2017)

    Article  ADS  Google Scholar 

  144. J. R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. Ç. Top, A. O. Jamison, and W. Ketterle, A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates, Nature 543(7643), 91 (2017)

    Article  ADS  Google Scholar 

  145. B. Song, L. Zhang, C. He, T. F. J. Poon, E. Hajiyev, S. Zhang, X. J. Liu, and G. B. Jo, Observation of symmetry-protected topological band with ultracold fermions, Sci. Adv. 4(2), 4748 (2018)

    Article  ADS  Google Scholar 

  146. V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum gases, Nature 494(7435), 49 (2013)

    Article  ADS  Google Scholar 

  147. H. Zhai, Degenerate quantum gases with spin-orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  148. L. Zhang and X.J. Liu, Spin-orbit coupling and topological phases for ultracold atoms, arXiv: 1806.05628 (2018)

    Book  Google Scholar 

  149. Y. J. Wu, W. Y. Zhou, and S. P. Kou, Bogoliubov excitations in the Bose-Hubbard extension of a Weyl semimetal, Phys. Rev. A 95(2), 023620 (2017)

    Article  ADS  Google Scholar 

  150. B. Huang and X. Yang, Mott insulator-superfluid phase transition in two-band Bose-Hubbard models with gapless nodal lines, J. Phys. At. Mol. Opt. Phys. 51(1), 015302 (2018)

    Article  ADS  Google Scholar 

  151. W. Y. Zhou, Y. J. Wu, and S. P. Kou, Bogoliubov excitations in a Bose-Hubbard model on a hyperhoneycomb lattice, Chin. Phys. B 27(5), 050302 (2018)

    Article  ADS  Google Scholar 

  152. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)

    Article  ADS  Google Scholar 

  153. B. M. Anderson, G. Juzeliunas, V. M. Galitski, and I. B. Spielman, Synthetic 3D spin-orbit coupling, Phys. Rev. Lett. 108(23), 235301 (2012)

    Article  ADS  Google Scholar 

  154. T. Dubček, C. J. Kennedy, L. Lu, W. Ketterle, M. Soljačić, and H. Buljan, Weyl points in three-dimensional optical lattices: Synthetic magnetic monopoles in momentum space, Phys. Rev. Lett. 114(22), 225301 (2015)

    Article  ADS  Google Scholar 

  155. Y. Xu and C. Zhang, Dirac and Weyl rings in three-dimensional cold-atom optical lattices, Phys. Rev. A 93(6), 063606 (2016)

    Article  ADS  Google Scholar 

  156. D. W. Zhang, Y. X. Zhao, R. B. Liu, Z. Y. Xue, S. L. Zhu, and Z. D. Wang, Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice, Phys. Rev. A 93(4), 043617 (2016)

    Article  ADS  Google Scholar 

  157. A. M. Turner and A. Vishwanath, Beyond band insulators: Topology of semimetals and interacting phases, Topol. Insul. 6, 293 (2013)

    Article  Google Scholar 

  158. P. Hosur and X. Qi, Recent developments in transport phenomena in Weyl semimetals, C. R. Phys. 14(9–10), 857 (2013)

    Article  ADS  Google Scholar 

  159. O. Vafek and A. Vishwanath, Dirac fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals, Annu. Rev. Condens. Matter Phys. 5(1), 83 (2014)

    Article  ADS  Google Scholar 

  160. D. E. Kharzeev, The Chiral Magnetic Effect and anomaly-induced transport, Prog. Part. Nucl. Phys. 75, 133 (2014)

    Article  ADS  Google Scholar 

  161. T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, Dirac materials, Adv. Phys. 63(1), 1 (2014)

    Article  ADS  Google Scholar 

  162. W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Correlated quantum phenomena in the strong spin-orbit regime, Annu. Rev. Condens. Matter Phys. 5(1), 57 (2014)

    Article  ADS  Google Scholar 

  163. A. Burkov, Chiral anomaly and transport in Weyl metals, J. Phys.: Condens. Matter 27(11), 113201 (2015)

    ADS  Google Scholar 

  164. A. P. Schnyder and P. M. R. Brydon, Topological surface states in nodal superconductors, J. Phys.: Condens. Matter 27(24), 243201 (2015)

    ADS  Google Scholar 

  165. M. Z. Hasan, S. Y. Xu, and G. Bian, Topological insulators, topological superconductors and Weyl fermion semimetals: Discoveries, perspectives and outlooks, Phys. Scr. T164, 014001 (2015)

    Article  ADS  Google Scholar 

  166. E. Witten, Three lectures on topological phases of matter, Riv. Nuovo Cim. 39, 313 (2016)

    ADS  Google Scholar 

  167. H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter 28(30), 303001 (2016)

    Google Scholar 

  168. A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)

    Article  ADS  Google Scholar 

  169. A. A. Burkov, Topological semimetals, Nat. Mater. 15(11), 1145 (2016)

    Article  ADS  Google Scholar 

  170. S. Jia, S. Y. Xu, and M. Z. Hasan, Weyl semimetals, Fermi arcs and chiral anomalies, Nat. Mater. 15(11), 1140 (2016)

    Article  ADS  Google Scholar 

  171. B. Yan and C. Felser, Topological materials: Weyl semimetals, Annu. Rev. Condens. Matter Phys. 8(1), 337 (2017)

    Article  ADS  Google Scholar 

  172. M. Z. Hasan, S. Y. Xu, I. Belopolski, and S. M. Huang, Discovery of Weyl fermion semimetals and topological Fermi arc states, Annu. Rev. Condens. Matter Phys. 8(1), 289 (2017)

    Article  ADS  Google Scholar 

  173. L. Šmejkal, T. Jungwirth, and J. Sinova, Route towards Dirac and Weyl antiferromagnetic spintronics, Phys. Status Solidi Rapid Res. Lett. 11(4), 1770317 (2017)

    Article  ADS  Google Scholar 

  174. A. Burkov, Weyl metals, Annu. Rev. Condens. Matter Phys. 9(1), 359 (2018)

    Article  ADS  Google Scholar 

  175. S. V. Syzranov and L. Radzihovsky, High-dimensional disorder-driven phenomena in Weyl semimetals, semiconductors, and related systems, Ann. Rev. Condens. Matter Phys. 9(1), 35 (2018)

    Article  ADS  Google Scholar 

  176. N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  177. T. Meng and L. Balents, Weyl superconductors, Phys. Rev. B 86(5), 054504 (2012)

    Article  ADS  Google Scholar 

  178. G. B. Halasz and L. Balents, Time-reversal invariant realization of the Weyl semimetal phase, Phys. Rev. B 85(3), 035103 (2012)

    Article  ADS  Google Scholar 

  179. M. O. Goerbig, J. N. Fuchs, G. Montambaux, and F. Piéchon, Tilted anisotropic Dirac cones in quinoid-type graphene and α-(BEDT-TTF)2I3, Phys. Rev. B 78(4), 045415 (2008)

    Article  ADS  Google Scholar 

  180. J. Yang and N. Nagaosa, Classification of stable three-dimensional Dirac semimetals with nontrivial topology, Nat. Commun. 5(1), 4898 (2014)

    Article  ADS  Google Scholar 

  181. H. Huang, S. Zhou, and W. Duan, Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides, Phys. Rev. B 94(12), 121117 (2016)

    Article  ADS  Google Scholar 

  182. M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng, G. Wan, H. Zhang, M. Arita, H. Yang, Z. Sun, H. Yao, Y. Wu, S. Fan, W. Duan, and S. Zhou, Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2, Nat. Commun. 8(1), 257 (2017)

    Article  ADS  Google Scholar 

  183. G. G. Pyrialakos, N. S. Nye, N. V. Kantartzis, and D. N. Christodoulides, Emergence of type-II Dirac points in graphynelike photonic lattices, Phys. Rev. Lett. 119(11), 113901 (2017)

    Article  ADS  Google Scholar 

  184. H. X. Wang, Y. Chen, Z. H. Hang, H. Y. Kee, and J. H. Jiang, Type-II Dirac photons, Quantum Materials 2(1), 54 (2017)

    Article  ADS  Google Scholar 

  185. H. J. Noh, J. Jeong, E. J. Cho, K. Kim, B. I. Min, and B. G. Park, Experimental realization of type-II Dirac fermions in a PdTe2 superconductor, Phys. Rev. Lett. 119(1), 016401 (2017)

    Article  ADS  Google Scholar 

  186. F. C. Fei, X. Y. Bo, R. Wang, B. Wu, J. Jiang, D. Z. Fu, M. Gao, H. Zheng, Y. L. Chen, X. F. Wang, H. J. Bu, F. Q. Song, X. G. Wan, B. G. Wang, and G. H. Wang, Nontrivial Berry phase and type-II Dirac transport in the layered material PdTe2, Phys. Rev. B 96, 041201(R) (2017)

    Article  ADS  Google Scholar 

  187. Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified theory of PT and CP invariant topological metals and nodal superconductors, Phys. Rev. Lett. 116(15), 156402 (2016)

    Article  ADS  Google Scholar 

  188. S. Q. Shen, Topological Insulators: Dirac equation in Condensed Matters, Springer, Berlin, 2012

    Book  MATH  Google Scholar 

  189. N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, High-temperature surface superconductivity in topological flat-band systems, Phys. Rev. B 83, 220503(R) (2011)

    Article  ADS  Google Scholar 

  190. S. Li, Z.M. Yu, Y. Liu, S. Guan, S.S. Wang, X. Zhang, Y. Yao, and S. A. Yang, Type-II nodal loops: Theory and material realization, Phys. Rev. B 96(8), 081106 (2017)

    Article  ADS  Google Scholar 

  191. J. He, X. Kong, W. Wang, and S. P. Kou, Type II nodal line semimetal, arXiv: 1709.08287 (2017)

    Google Scholar 

  192. T. R. Chang, I. Pletikosic, T. Kong, G. Bian, A. Huang, J. Denlinger, S. K. Kushwaha, B. Sinkovic, H.-T. Jeng, T. Valla, W. W. Xie, and R. J. Cava, Realization of a type-II nodal-line semimetal in Mg3Bi2, arXiv: 1711.09167 (2017)

    Google Scholar 

  193. N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge University Press, Cambridge, 2011

    Book  MATH  Google Scholar 

  194. M. V. Berry, Physics of non-Hermitian degeneracies, Czech. J. Phys. 54(10), 1039 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  195. I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems, J. Phys. A Math. Theor. 42(15), 153001 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  196. W. D. Heiss, The physics of exceptional points, J. Phys. A Math. Theor. 45(44), 444016 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  197. C. M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  198. M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction, XXV, 637 pp. Springer, Berlin Heidelberg New York Tokyo 2003, Hardcover EUR 39.95 (excl. VAT)

    Google Scholar 

  199. G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B 59(23), 14915 (1999)

    Article  ADS  Google Scholar 

  200. Z. Zheng, M. Gong, X. Zou, C. Zhang, and G. Guo, Route to observable Fulde-Ferrell-Larkin-Ovchinnikov phases in three-dimensional spin-orbit-coupled degenerate Fermi gases, Phys. Rev. A 87, 031602(R) (2013)

    Article  ADS  Google Scholar 

  201. F. Wu, G. C. Guo, W. Zhang, and W. Yi, Unconventional superfluid in a two-dimensional Fermi gas with anisotropic spin-orbit coupling and Zeeman fields, Phys. Rev. Lett. 110(11), 110401 (2013)

    Article  ADS  Google Scholar 

  202. Y. Xu, C. Qu, M. Gong, and C. Zhang, Competing superfluid orders in spin-orbit-coupled fermionic cold-atom optical lattices, Phys. Rev. A 89(1), 013607 (2014)

    Article  ADS  Google Scholar 

  203. P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135(3A), A550 (1964)

    Article  ADS  Google Scholar 

  204. A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) (Sov. Phys. JETP 20, 762 (1965))

    Google Scholar 

  205. D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  206. Y. Cao, S. H. Zou, X. J. Liu, S. Yi, G. L. Long, and H. Hu, Gapless topological Fulde-Ferrell superfluidity in spin-orbit coupled Fermi gases, Phys. Rev. Lett. 113(11), 115302 (2014)

    Article  ADS  Google Scholar 

  207. Y. Xu and C. Zhang, Berezinskii-Kosterlitz-Thouless phase transition in 2D spin-orbit-coupled Fulde-Ferrell superfluids, Phys. Rev. Lett. 114(11), 110401 (2015)

    Article  ADS  Google Scholar 

  208. Y. Cao, X. J. Liu, L. He, G. L. Long, and H. Hu, Super-fluid density and Berezinskii-Kosterlitz-Thouless transition of a spin-orbit-coupled Fulde-Ferrell superfluid, Phys. Rev. A 91(2), 023609 (2015)

    Article  ADS  Google Scholar 

  209. X. Z. Ying and A. Kamenev, Symmetry-protected topological metals, Phys. Rev. Lett. 121(8), 086810 (2018)

    Article  ADS  Google Scholar 

  210. W. Y. He, D. H. Xu, B. T. Zhou, Q. Zhou, and K. T. Law, From nodal-ring topological superfluids to spiral Majorana modes in cold atomic systems, Phys. Rev. A 97(4), 043618 (2018)

    Article  ADS  Google Scholar 

  211. M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  212. X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  ADS  Google Scholar 

  213. J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)

    Article  ADS  Google Scholar 

  214. X. J. Liu, K. T. Law, and T. K. Ng, Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms, Phys. Rev. Lett. 112(8), 086401 (2014)

    Article  ADS  Google Scholar 

  215. B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Double Dirac semimetals in three dimensions, Phys. Rev. Lett. 116(18), 186402 (2016)

    Article  ADS  Google Scholar 

  216. B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science 353(6299), 6299 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  217. Y. Q. Zhu, D. W. Zhang, H. Yan, D. Y. Xing, and S. L. Zhu, Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices, Phys. Rev. A 96(3), 033634 (2017)

    Article  ADS  Google Scholar 

  218. H. Hu, J. Hou, F. Zhang, and C. Zhang, Topological triply degenerate points induced by spin-tensor-momentum couplings, Phys. Rev. Lett. 120(24), 240401 (2018)

    Article  ADS  Google Scholar 

  219. I. C. Fulga, L. Fallani, and M. Burrello, Geometrically protected triple-point crossings in an optical lattice, Phys. Rev. B 97, 121402(R) (2018)

    Article  ADS  Google Scholar 

  220. X. Y. Mai, Y. Q. Zhu, Z. Li, D. W. Zhang, and S. L. Zhu, Topological metal bands with double-triple-point fermions in optical lattices, arXiv: 1810.11560 (2018)

    Book  Google Scholar 

  221. B. Lian and S. C. Zhang, Five-dimensional generalization of the topological Weyl semimetal, Phys. Rev. B 94(4), 041105 (2016)

    Article  ADS  Google Scholar 

  222. B. Lian and S. C. Zhang, Weyl semimetal and topological phase transition in five dimensions, Phys. Rev. B 95(23), 235106 (2017)

    Article  ADS  Google Scholar 

  223. H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, and N. Goldman, Four-dimensional quantum Hall effect with ultracold atoms, Phys. Rev. Lett. 115(19), 195303 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Additional information

Acknowledgements

We appreciate the collaboration with C. Zhang, L.-M. Duan, F. Zhang, S.-T. Wang, R.-L. Chu, Y. Hu and Y.-B. Yang. We thank Q.-B. Zeng, Y.-B. Yang and Y.-L. Tao for helpful discussions and critical reading of the manuscript. This work was supported by the start-up program of Tsinghua University and the National Thousand-Young-Talents Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y. Topological gapless matters in three-dimensional ultracold atomic gases. Front. Phys. 14, 43402 (2019). https://doi.org/10.1007/s11467-019-0896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0896-1

Keywords

Navigation