Skip to main content
Log in

The nuclear shell model: Simplicity from complexity

  • Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The shell model of atomic nuclei has been in intensive use since the middle of the previous century. This simple model of very complex nuclei, offers a quantitative description of its many features. Other features follow from small deviations from the extreme picture. Our friend and colleague Akito Arima made seminal contributions to this field starting with his famous paper with Horie on the magnetic moments of nuclei [Prog. Theor. Phys. 11, 509 (1954)]. In the following, a detailed description of a simple example is considered. It is the 1f7/2 shell of the neutrons in the nuclei between 40Ca and 48Ca and of the protons in the nuclei between 48Ca and 56Ni. The results demonstrate the power and elegance of the shell model. They show how simplicity arises out of complexity. It is also shown how small deviations from the simple shell model lead to effects, in which valence neutrons act as if they carry electric charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arima and H. Horie, Configuration mixing and magnetic moments of odd nuclei, Prog. Theor. Phys. 11, 509 (1954)

    ADS  Google Scholar 

  2. W. Heisenberg, Ueber den Bau der Atom Kerne, Zeits. F. Physik. 77, 1 (1932)

    ADS  MATH  Google Scholar 

  3. J. H. Bartlett, Nuclear structure, Nature 130, 165, Structure of atomic nuclei, Phys. Rev. 41, 370 (1932)

    ADS  Google Scholar 

  4. W. M. Elsasser, Sur le principe de Pauli dans les noyaux, J. de phys. et radium 4, 549; II 5, 389; III 635 (1934); Energies de liaison des noyaux lourds, 6, 473 (1935)

    Google Scholar 

  5. N. Bohr, Neutron Capture and nuclear Constitution, Nature 137, 344 (1936)

    ADS  MATH  Google Scholar 

  6. G. Racah, Theory of complex spectra (I), Phys. Rev. 61, 186; Theory of complex spectra (II), Phys. Rev. 62, 438 (1942); Theory of complex spectra (III), Phys. Rev. 63, 367 (1943)

    ADS  Google Scholar 

  7. M. G. Mayer, On closed shells in nuclei, Phys. Rev. 74, 235 (1948)

    ADS  Google Scholar 

  8. E. Feenberg and K. C. Hammack, Nuclear shell structure, Phys. Rev. 75, 1877 (1949)

    ADS  Google Scholar 

  9. L. Nordheim, On spins, moments and shells in nuclei, Phys. Rev. 75, 1894 (1949)

    ADS  Google Scholar 

  10. M. G. Mayer, On closed shells in nuclei (II), Phys. Rev. 75, 1969

    ADS  Google Scholar 

  11. O. Haxel, J. H. D. Jensen and H. E. Suess, On the “magic numbers” in nuclear structure, Phys. Rev. 75, 1766 (1949), where earlier references are listed.

    ADS  Google Scholar 

  12. M. G. Mayer, Nuclear configurations in the spin-orbit coupling model (I): Empirical evidence, Phys. Rev. 78, 16 (1950)

    ADS  MATH  Google Scholar 

  13. M. G. Mayer, Nuclear configurations in the spin-orbit coupling model (II): Theoretical considerations, Phys. Rev. 78, 22 (1950)

    ADS  MATH  Google Scholar 

  14. G. Racah, Nuclear coupling and shell model, Phys. Rev. 78, 622 (1950)

    ADS  MATH  Google Scholar 

  15. D. Kurath, Effect of finite range interactions in the (jj) coupling shell model, Phys. Rev. 80, 98 (1950)

    ADS  Google Scholar 

  16. I. Talmi, On the spin of the nuclear ground state in the jj-coupling scheme, Phys. Rev. 82, 101 (1951)

    ADS  MATH  Google Scholar 

  17. I. Talmi, nuclear spectroscopy with harmonic oscillator wave functions, Helv. Phys. Acta 25, 185 (1952)

    MATH  Google Scholar 

  18. K. Ford and C. A. Levinson, Independent-particle model of the nucleus (I): Inter particle forces and configuration mixing, Phys. Rev. 99, 742 (1955); Independent-particle model of The nucleus (III): The calcium isotopes, Phys. Rev. 100, 13 (1955)

    ADS  MATH  Google Scholar 

  19. S. Goldstein and I. Talmi, Related jj-coupling configurations in 38Cl and 40K, Phys. Rev. 102, 589 (1956)

    ADS  Google Scholar 

  20. S. P. Pandya, Nucleon-hole interaction in jj-coupling, Phys. Rev. 103, 956 (1956)

    ADS  Google Scholar 

  21. I. Talmi and I. Unna, Theoretical interpretation of energy levels of light nuclei, Ann. Rev. Nucl. Sci. 10, 426 (1961)

    Google Scholar 

  22. R. D. Lawson and J. L. Uretsky, Excited states in the proton f 7/2 shell, Phys. Rev. 106, 1369 (1957)

    ADS  Google Scholar 

  23. I. Talmi, Energies of f n 7/2 nuclear configurations, Phys. Rev. 107, 326 (1957)

    ADS  Google Scholar 

  24. D. Amit and A. Katz, Effective interaction calculations of energy levels and wave functions in the nuclear 1p shell, Nucl. Phys. 58, 388 (1964)

    Google Scholar 

  25. S. Cohen and D. Kurath, Effective interaction for the 1p shell, Nucl. Phys. 73, 1 (1965)

    Google Scholar 

  26. B. H. Wildenthal, Empirical strengths of spin operators in nuclei, Prog. Part. Nucl. Phys. 11, 5 (1984), where earlier references are listed.

    ADS  Google Scholar 

  27. B. A. Brown and B. H. Wildenthal, Status of the nuclear shell model, Ann. Rev. Nucl. Sci. 38, 29 (1988)

    ADS  Google Scholar 

  28. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, The shell model as a unified view of nuclear structure, Rev. Mod. Phys. 77, 427 (2005)

    ADS  Google Scholar 

  29. T. Otsuka, et al., Monte Carlo shell model for atomic nuclei, Prog. Part. Nucl. Phys. 47, 319 (2001)

    ADS  Google Scholar 

  30. N. Shimizu, et al., New-generation Monte Carlo shell model for the K computer era, Prog. Theor. Exp. Phys. 2012, 01A205 (2012)

    Google Scholar 

  31. B. H. Flowers, Studies in jj-coupling (I): Classification of nuclear and atomic states, Proc. Roy. Soc. A 212, 248 (1952)

    ADS  MATH  Google Scholar 

  32. G. Racah, Nuclear levels and Casimir operator, in: Farkas Memorial Volume, Res. Council of Israel, Jerusalem, 1952

    Google Scholar 

  33. A. de Shalit and I. Talmi, Nuclear Shell Theory, Academic Press, 1963, reprinted by Dover Publications, 2004

    Google Scholar 

  34. I. Talmi, Simple Models of Complex Nuclei, Harwood, 1993

    Google Scholar 

  35. E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, 1959

    MATH  Google Scholar 

  36. G. Racah, Theory of complex spectra (II), Phys. Rev. 62, 438 (1942)

    ADS  Google Scholar 

  37. E. P. Wigner, Unpublished widely circulated MS. Reprinted in: Quantum Theory of Angular Momentum, Eds. L. C. Biedenharn and H. van Dam, Academic Press, 1965

    Google Scholar 

  38. I. Talmi, Effective interactions and nuclear models, in: Proc. Int. School Phys. Enrico Fermi, Varenna (1984)

    Google Scholar 

  39. A. Volya. Manifestation of three-body forces in f 7/2-shell nuclei, Europhys. Lett. 86, 52001 (2009)

    ADS  Google Scholar 

  40. P. Van Isacker and I. Talmi, Effective three-body interactions in nuclei, Europhys. Lett. 90, 32001 (2010)

    ADS  Google Scholar 

  41. R. F. Garcia Ruiz, et al., M. L. Bissell, K. Blaum, Ground-state electromagnetic moments of calcium isotopes, Phys Rev. C 91, 041304(R) (2015)

    ADS  Google Scholar 

  42. L. Zamick, Two-body contribution to the effective radius operator, Ann. Phys. 66, 784 (1971)

    ADS  Google Scholar 

  43. I. Talmi, On the odd-even effect in the charge radii of isotopes, Nucl. Phys. A 423, 189 (1982)

    ADS  Google Scholar 

  44. A. Andl, K. Bekk, S. Göring, et al., Isotope shifts and hyperfine structure of the 4s2 1S0–4s4p1P1 transition in calcium isotopes, Phys. Rev. C 26, 2194 (1982)

    ADS  Google Scholar 

  45. A. Arima and F. Iachello, Collective nuclear states as representations of a SU(6) group, Phys. Rev. Lett. 35, 1064 (1975)

    ADS  Google Scholar 

  46. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, 1951

    MATH  Google Scholar 

  47. G. Racah, Model interactions in atomic spectroscopy, J. Quant. Spectroscop. Radiat. Transfer 4, 617 (1964)

    ADS  Google Scholar 

  48. I. Talmi, Generalized seniority and structure of semimagic nuclei, Nucl. Phys. A 172, 1 (1971)

    ADS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Akito, on his reaching 88 years as a token of appreciation and friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igal Talmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talmi, I. The nuclear shell model: Simplicity from complexity. Front. Phys. 13, 132103 (2018). https://doi.org/10.1007/s11467-018-0847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0847-2

Keywords

Navigation