Skip to main content
Log in

Alpha-clustering effects in heavy nuclei

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The study of cluster structures in light nuclei is extending to the heavy nuclei in these years. As for the stable N = Z nuclei, from the lighter 8Be, 12C nuclei to the heavier 20Ne and even the 40Ca and 44Ti medium nuclei, the α cluster structures have been well studied and confirmed. In heavy nuclei, due to the dominated mean field, the existence of α cluster structure is not clear as light nuclei but some clues were found for indicating the core+α cluster structure in some nuclei, in particular, the 208Pb+α structure in 212Po. We review some recent progress about the theoretical and experimental explorations of the α-clustering effects in heavy nuclei. We also discuss the possible α cluster structure of heavy nuclei from the view of α decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus, Vieweg, 1977

    Google Scholar 

  2. H. Horiuchi, K. Ikeda, and Y. Suzuki, Molecule-like structures in nuclear system, Prog. Theor. Phys. Suppl. 52, 89 (1972)

    ADS  Google Scholar 

  3. H. Horiuchi, K. Ikeda, and K. Katō, Recent developments in nuclear cluster physics, Prog. Theor. Phys. Suppl. 192, 1 (2012)

    ADS  Google Scholar 

  4. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.-G. Meisner, Microscopic clustering in nuclei, arXiv: 170506192 (2017)

    Google Scholar 

  5. W. Wefelmeier, Ein geometrisches Modell des Atomkerns, Z. Für Phys. Hadrons Nucl. 107, 332 (1937)

    Google Scholar 

  6. K. Ikeda, N. Takigawa, and H. Horiuchi, The systematic structure-change into the molecule-like structures in the self-conjugate 4n nuclei, Prog. Theor. Phys. Suppl. E68, 464 (1968)

    ADS  Google Scholar 

  7. H. Horiuchi, Kernels of GCM, RGM and OCM and their calculation methods, Prog. Theor. Phys. Suppl. 62, 90 (1977)

    ADS  Google Scholar 

  8. Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, et al., Comprehensive study of alpha-nuclei, Prog. Theor. Phys. Suppl. 68, 29 (1980)

    ADS  Google Scholar 

  9. M. Freer and H. O. U. Fynbo, The Hoyle state in 12C, Prog. Part. Nucl. Phys. 78, 1 (2014)

    ADS  Google Scholar 

  10. A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Alpha cluster condensation in 12C and 16O, Phys. Rev. Lett. 87, 192501 (2001)

    ADS  Google Scholar 

  11. Y. Funaki, H. Horiuchi, and A. Tohsaki, Cluster models from RGM to alpha condensation and beyond, Prog. Part. Nucl. Phys. 82, 78 (2015)

    ADS  Google Scholar 

  12. T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, et al., Criterion for Bose–Einstein condensation in traps and self-bound systems, Phys. Rev. A 78, 035603 (2008)

    ADS  Google Scholar 

  13. A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Colloquium status of alpha-particle condensate structure of the Hoyle state, Rev. Mod. Phys. 89, 011002 (2017)

    ADS  Google Scholar 

  14. Y. Kanada-En’yo and H. Horiuchi, Clustering in yrast States of 20Ne studied with antisymmetrized molecular dynamics, Prog. Theor. Phys. 93, 115 (1995)

    ADS  Google Scholar 

  15. M. Kimura, T. Suhara, and Y. Kanada-En’yo, Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei, Eur. Phys. J. A 52, 373 (2016)

    ADS  Google Scholar 

  16. H. Feldmeier, Fermionic molecular dynamics, Nucl. Phys. A 515, 147 (1990)

    ADS  Google Scholar 

  17. T. Neff and H. Feldmeier, Cluster structures within fermionic molecular dynamics, Nucl. Phys. A 738, 357 (2004)

    ADS  Google Scholar 

  18. C. Beck (Ed.), Clusters in Nuclei, Lecture Notes in Physics, Springer, Heidelberg; New York, 2010

    Google Scholar 

  19. B. Zhou, A. Tohsaki, H. Horiuchi, and Z. Ren, Breathing-like excited state of the Hoyle state in 12C, Phys. Rev. C 94, 044319 (2016)

    ADS  Google Scholar 

  20. Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, et al., Resonance states in 12C and alpha-particle condensation, Eur. Phys. J. A 24, 321 (2005)

    ADS  Google Scholar 

  21. Y. Kanada-En’yo, M. Kimura, and A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena, Prog. Theor. Exp. Phys. 2012 (2012)

  22. T. Yamaya, K. Katori, M. Fujiwara, S. Kato, and S. Ohkubo, Alpha-cluster study of 40Ca and 44Ti by the (6Li, d) reaction, Prog. Theor. Phys. 132, 73 (1998)

    Google Scholar 

  23. T. Sakuda and S. Ohkubo, Microscopic study of coexistence of alpha-cluster and shell-model structure in the 40Ca-44Ti region, Prog. Theor. Phys. 132, 103 (1998)

    Google Scholar 

  24. R. D. Lawson, Theory of the Nuclear Shell Model, Clarendon Press, 1980

    Google Scholar 

  25. R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S. Delion, Microscopic theory of cluster radioactivity, Phys. Rep. 294, 265 (1998)

    ADS  Google Scholar 

  26. I. Tonozuka and A. Arima, Surface α-clustering and α-decays of 212Po, Nucl. Phys. A 323, 45 (1979)

    ADS  Google Scholar 

  27. A. Astier, P. Petkov, M.-G. Porquet, D. S. Delion, et al., Novel manifestation of ensuremath alpha-clustering structures: New α+208Pb states in 212Po revealed by their enhanced E1 decays, Phys. Rev. Lett. 104, 042701 (2010)

    ADS  Google Scholar 

  28. Z. Ren, C. Xu, and Z. Wang, New perspective on complex cluster radioactivity of heavy nuclei, Phys. Rev. C 70, 034304 (2004)

    ADS  Google Scholar 

  29. J. Zhang, W. Rae, and A. Merchant, Systematics of some 3-dimensional alpha-cluster configurations in 4n nuclei from 16O to 44Ti, Nucl. Phys. A 575, 61 (1994)

    ADS  Google Scholar 

  30. S. i. Koh, Many-body approach to the alpha-correlation inside of the heavy nuclei, Prog. Theor. Phys. Suppl. 132, 197 (1998)

    ADS  Google Scholar 

  31. A. Tohsaki and N. Itagaki, Alpha clustering with a hollow structure: Geometrical structure of alpha clusters from platonic solids to fullerene shape, Phys. Rev. C 97, 011301 (2018)

    ADS  Google Scholar 

  32. N. Takigawa and A. Arima, Structure of 12C, Nucl. Phys. A 168, 593 (1971)

    ADS  Google Scholar 

  33. K. Ikeda, T. Marumori, R. Tamagaki, and H. Tanaka, Formation of the Viewpoint, Alpha-like four-body correlations and molecular aspects in nuclei, Prog. Theor. Phys. Suppl. 52, 1 (1972)

    ADS  Google Scholar 

  34. Y. Kanada-En’yo, M. Kimura, and H. Horiuchi, Antisymmetrized molecular dynamics: A new insight into the structure of nuclei, Comp. Rend. Phys. 4, 497 (2003)

    ADS  Google Scholar 

  35. M. Kimura, Cluster states in stable and unstable nuclei, arXiv: 1612.02086 (2016)

    Google Scholar 

  36. T. Matsuse, M. Kamimura, and Y. Fukushima, Study of the alpha-clustering structure of 20Ne based on the resonating group method for 20O+α, Prog. Theor. Phys. 53, 706 (1975)

    ADS  Google Scholar 

  37. B. Zhou, Z. Ren, C. Xu, Y. Funaki, et al., New concept for the ground-state band in 20Ne within a microscopic cluster model, Phys. Rev. C 86, 014301 (2012)

    ADS  Google Scholar 

  38. J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, How atomic nuclei cluster, Nature 487, 341 (2012)

    ADS  Google Scholar 

  39. H. Horiuchi and K. Ikeda, A molecule-like structure in atomic nuclei of 16O* and 20Ne, Prog. Theor. Phys. 40, 277 (1968)

    ADS  Google Scholar 

  40. A. Arima and S. Yoshida, Alpha-decay widths of 20Ne, Phys. Lett. B 40, 15 (1972)

    ADS  Google Scholar 

  41. B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, et al., Nonlocalized cluster dynamics and nuclear molecular structure, Phys. Rev. C 89, 034319 (2014)

    ADS  Google Scholar 

  42. P. Chattopadhyay and R. M. Dreizler, Numerical aspects of angular momentum projection for rotational nuclei, Nucl. Phys. A 321, 62 (1979)

    ADS  Google Scholar 

  43. P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer Science & Business Media, 2004

    Google Scholar 

  44. B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, et al., Nonlocalized clustering: A new concept in nuclear cluster structure physics, Phys. Rev. Lett. 110, 262501 (2013)

    ADS  Google Scholar 

  45. Y. Funaki, T. Yamada, E. Hiyama, B. Zhou, et al., Container structure of alpha-alpha-lambda clusters in 9-lambda-beryrium, Prog. Theor. Exp. Phys. 2014, 113D01 (2014)

    Google Scholar 

  46. B. Zhou, Y. Funaki, A. Tohsaki, H. Horiuchi, et al., The container picture with two-alpha correlation for the ground state of 12C, Prog. Theor. Exp. Phys. 2014, 101D01 (2014)

    Google Scholar 

  47. M. Lyu, Z. Ren, B. Zhou, Y. Funaki, et al., Investigation of 9Be from a nonlocalized clustering concept, Phys. Rev. C 91, 014313 (2015)

    ADS  Google Scholar 

  48. M. Lyu, Z. Ren, B. Zhou, Y. Funaki, et al., Investigation of 10Be and its cluster dynamics with the nonlocalized clustering approach, Phys. Rev. C 93, 054308 (2016)

    ADS  Google Scholar 

  49. B. Zhou, New trial wave function for the nuclear cluster structure of nuclei, Prog. Theor. Exp. Phys. 2018, 041D01 (2018)

    Google Scholar 

  50. S. Ohkubo and K. Umehara, Inversion doublet K π = 0 - band with the alpha+36Ar cluster structure in 40Ca, Prog. Theor. Phys. 80, 598 (1988)

    ADS  Google Scholar 

  51. Y. Taniguchi, M. Kimura, Y. Kanada-En’yo, and H. Horiuchi, Clustering and triaxial deformations of 40Ca, Phys. Rev. C 76, 044317 (2007)

    ADS  Google Scholar 

  52. T. Yamaya, M. Saitoh, M. Fujiwara, T. Itahashi, K. Katori, T. Suehiro, S. Kato, S. Hatori, and S. Ohkubo, Cluster structure in 40Ca via the α-transfer reaction, Nucl. Phys. A 573, 154 (1994)

    ADS  Google Scholar 

  53. T. Wada and H. Horiuchi, Resonating-group-method study of alpha+40Ca elastic scattering and 44Ti structure, Phys. Rev. C 38, 2063 (1988)

    ADS  Google Scholar 

  54. F. Michel, S. Ohkubo, and G. Reidemeister, Local potential approach to the alpha-nucleus interaction and alpha-cluster structure in nuclei, Prog. Theor. Phys. Suppl. 132, 7 (1998)

    ADS  Google Scholar 

  55. M. Kimura and H. Horiuchi, Coexistence of cluster structure and superdeformation in 44Ti, Nucl. Phys. A 767, 58 (2006)

    ADS  Google Scholar 

  56. R. R. Betts, Resonances in heavy ion collisions — Nuclear structure at large deformations, Nucl. Phys. A 447, 257 (1986)

    ADS  Google Scholar 

  57. E. Uegaki, Molecular resonances in medium-weight nuclei, Prog. Theor. Phys. 132, 135 (1998)

    Google Scholar 

  58. E. Uegaki and Y. Abe, Resonances in 28Si+28Si.I — dinuclear molecular model with axial asymmetry, Prog. Theor. Phys. 127, 831 (2012)

    ADS  MATH  Google Scholar 

  59. E. Uegaki and Y. Abe, Resonances in 28Si+28Si (II) — Analyses for the angular distributions and angular correlations, Prog. Theor. Phys. 127, 877 (2012)

    ADS  MATH  Google Scholar 

  60. S. Saito, Theory of resonating group method and generator coordinate method, and orthogonality condition model, Prog. Theor. Phys. Suppl. 62, 11 (1977)

    ADS  Google Scholar 

  61. Z. Ren and G.-O. Xu, Evidence of alpha correlation from binding energies in medium and heavy nuclei, Phys. Rev. C 38, 1078 (1988)

    ADS  Google Scholar 

  62. M. Hasegawa, Alpha-like four-nucleon correlations viewed in single-particle mean field, Prog. Theor. Phys. 132, 177 (1998)

    Google Scholar 

  63. M. Girod and P. Schuck, Alpha-particle clustering from expanding self-conjugate nuclei within the Hartree–Fock–Bogoliubov approach, Phys. Rev. Lett. 111, 132503 (2013)

    ADS  Google Scholar 

  64. F. D. Becchetti, L. T. Chua, J. Jänecke, and A. M. VanderMolen, Systematics of the (d, 6Li) Reaction and alpha Clustering in Heavy Nuclei, Phys. Rev. Lett. 34, 225 (1975)

    ADS  Google Scholar 

  65. F. D. Becchetti and J. Jänecke, Neutron blocking in alpha-particle-transfer reactions, Phys. Rev. Lett. 35, 268 (1975)

    ADS  Google Scholar 

  66. Z. Ren and G.-O. Xu, Reduced alpha transfer rates in a schematic model, Phys. Rev. C 36, 456 (1987)

    ADS  Google Scholar 

  67. B. Buck, J. C. A. C. Merchant, and S. M. Perez, Cluster model of alpha decay and 212Po, Phys. Rev. C 53, 2841 (1996)

    ADS  Google Scholar 

  68. C. Xu, Z. Ren, G. Röpke, P. Schuck, et al., alpha-decay width of 212Po from a quartetting wave function approach, Phys. Rev. C 93, 011306 (2016)

    ADS  Google Scholar 

  69. C. Xu, G. Röpke, P. Schuck, Z. Ren, et al., Alpha-cluster formation and decay in the quartetting wave function approach, Phys. Rev. C 95, 061306 (2017)

    ADS  Google Scholar 

  70. K. Varga, R. G. Lovas, and R. J. Liotta, Absolute alpha decay width of 212Po in a combined shell and cluster model, Phys. Rev. Lett. 69, 37 (1992)

    ADS  Google Scholar 

  71. G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, et al., Nuclear clusters bound to doubly magic nuclei: The case of 212Po, Phys. Rev. C 90, 034304 (2014)

    ADS  Google Scholar 

  72. G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, et al., Alpha decay width of 212Po from a quartetting wave function approach, J. Phys. Conf. Ser. 863, 012006 (2017)

    Google Scholar 

  73. Y. Chiba, M. Kimura, and Y. Taniguchi, Isoscalar dipole transition as a probe for asymmetric clustering, Phys. Rev. C 93, 034319 (2016)

    ADS  Google Scholar 

  74. D. Brink, The Alpha-Particle Model of Light Nuclei, in International School of Physics Enrico Fermi, Course 37 (in International School of Physics, 1966)

    Google Scholar 

  75. D. M. Brink, History of cluster structure in nuclei, J. Phys. Conf. Ser. 111, 012001 (2008)

    Google Scholar 

  76. Y. Akaishi, S. A. Chin, Horiuchi, and K. Ikeda, Cluster Models and Other Topics, World Scientific, 1987

    Google Scholar 

  77. A. Tohsaki and N. Itagaki, Coulomb energy of alphaparticle aggregates distributed on Archimedean solids, Phys. Rev. C 98, 014302 (2018)

    ADS  Google Scholar 

  78. A. Tohsaki, New effective internucleon forces in microscopic alpha-cluster model, Phys. Rev. C 49, 1814 (1994)

    ADS  Google Scholar 

  79. D. Brink and J. Castro, Alpha clustering effects in nuclear matter, Nucl. Phys. A 216, 109 (1973)

    ADS  Google Scholar 

  80. A. Tohsaki-Suzuki, Microscopic study of alpha-cluster matter, Prog. Theor. Phys. 81, 370 (1989)

    ADS  Google Scholar 

  81. K. Wei and H. F. Zhang, Cluster preformation law for heavy and superheavy nuclei, Phys. Rev. C 96 (2017)

  82. Y. Qian and Z. Ren, New insight into α clustering of heavy nuclei via their α decay, Phys. Lett. B 777, 298 (2018)

    ADS  Google Scholar 

  83. D. Ni and Z. Ren, Systematic calculation of α decay within a generalized density-dependent cluster model, Phys. Rev. C 81, 024315 (2010)

    ADS  Google Scholar 

  84. D. Ni and Z. Ren, Theoretical description of fine structure in the ensuremath alpha decay of heavy odd-odd nuclei, Phys. Rev. C 87, 027602 (2013)

    ADS  Google Scholar 

  85. Y. Qian and Z. Ren, Systematic calculations on exotic α-decay half-lives of nuclei with N = 125, 126, 127, Nucl. Phys. A 852, 82 (2011)

    Google Scholar 

  86. C. Xu and Z. Ren, New deformed model of alpha-decay half-lives with a microscopic potential, Phys. Rev. C 73, 041301 (2006)

    ADS  Google Scholar 

  87. A. N. Andreyev, M. Huyse, P. Van Duppen, et al., Signatures of the Z = 82 Shell Closure in alpha Decay Process, Phys. Rev. Lett. 110, 242502 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are honoured in dedicating this review paper to the celebration of Professor Akito Arima’s 88th birthday. The authors are grateful for the discussions with Prof. Hisashi Horiuchi, Prof. Akihiro Tohsaki, Prof. Gerd Röpke, Prof. Peter Schuck, Prof. Masaaki Kimura, Prof. Yasuro Funaki, Prof. Chang Xu, and Prof. Taiichi Yamada. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11535004, 11375086, 11120101005, 11175085, 11235001, and 11761161001), the National Major State Basic Research and Development of China, Grant Nos. 2016YFE0129300 and 2018YFA0404403, the Science and Technology Development Fund of Macau under grant No. 008/2017/AFJ, and JSPS KAKENHI Grant No. 17K1426207.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongzhou Ren or Bo Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Zhou, B. Alpha-clustering effects in heavy nuclei. Front. Phys. 13, 132110 (2018). https://doi.org/10.1007/s11467-018-0846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0846-3

Keywords

Navigation