Skip to main content
Log in

\(\alpha\) clustering slightly above 100Sn in the light of the new experimental data on the superallowed \(\alpha\) decay

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The recently observed \(\alpha\)-decay chain 108Xe \( \rightarrow\)104Te \( \rightarrow\)100Sn (K. Auranen et al., Phys. Rev. Lett. 121, 182501 (2018)) could provide valuable information on the \(\alpha\) clustering in even-even nuclei slightly above the major shells \(Z=50\) and \(N=50\). In this work, this \(\alpha\)-decay chain is studied theoretically within the framework of the density-dependent cluster model plus the two-potential approach. We calculate the \(\alpha\)-decay half-lives of 104Te and 108Xe and study in detail their dependence on the Q value and the density-profile parameters of the core nucleus. Various physical properties of 104Te, the heaviest nucleus with a doubly magic self-conjugate core + \(\alpha\), are calculated, with two different assumptions on the renormalization factor of the double-folding potential, which could be a useful reference for future experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001) arXiv:nucl-th/0110014

    Article  ADS  Google Scholar 

  2. D. Bai, Z. Ren, Phys. Rev. C 97, 054301 (2018) arXiv:1804.05992 [nucl-th]

    Article  ADS  Google Scholar 

  3. R. Katsuragi, Y. Kazama, J. Takahashi, Y. Nakamura, Y. Yamanaka, S. Ohkubo, Phys. Rev. C 98, 044303 (2018) arXiv:1805.12255 [nucl-th]

    Article  ADS  Google Scholar 

  4. M. Barbui et al., Phys. Rev. C 98, 044601 (2018) arXiv:1806.08424 [nucl-ex]

    Article  ADS  Google Scholar 

  5. D.S. Delion, Lect. Notes Phys. 819, 1 (2010)

    Google Scholar 

  6. D.S. Delion, Z. Ren, A. Dumitrescu, D. Ni, J. Phys. G 45, 053001 (2018)

    Article  ADS  Google Scholar 

  7. Z. Ren, B. Zhou, Front. Phys. (Beijing) 13, 132110 (2018)

    Article  Google Scholar 

  8. C. Qi, R. Liotta, R. Wyss, arXiv:1810.07745 [nucl-th].

  9. D. Bai, Z. Ren, Phys. Lett. B 786, 5 (2018) arXiv:1809.04952 [nucl-th]

    Article  ADS  Google Scholar 

  10. D. Seweryniak et al., Phys. Rev. C 73, 061301 (2006)

    Article  ADS  Google Scholar 

  11. S.N. Liddick et al., Phys. Rev. Lett. 97, 082501 (2006)

    Article  ADS  Google Scholar 

  12. L. Capponi et al., Phys. Rev. C 94, 024314 (2016)

    Article  ADS  Google Scholar 

  13. C. Xu, Z. Ren, Phys. Rev. C 74, 037302 (2006) arXiv:nucl-th/0609027

    Article  ADS  Google Scholar 

  14. P. Mohr, Eur. Phys. J. A 31, 23 (2007)

    Article  ADS  Google Scholar 

  15. R.I. Betan, W. Nazarewicz, Phys. Rev. C 86, 034338 (2012) arXiv:1208.1422 [nucl-th]

    Article  ADS  Google Scholar 

  16. M. Patial, R.J. Liotta, R. Wyss, Phys. Rev. C 93, 054326 (2016)

    Article  ADS  Google Scholar 

  17. K. Auranen et al., Phys. Rev. Lett. 121, 182501 (2018)

    Article  ADS  Google Scholar 

  18. P. Moller, J.R. Nix, K.L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997)

    Article  ADS  Google Scholar 

  19. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. C 45, 2247 (1992)

    Article  ADS  Google Scholar 

  20. V.Y. Denisov, H. Ikezoe, Phys. Rev. C 72, 064613 (2005) arXiv:nucl-th/0510082

    Article  ADS  Google Scholar 

  21. D. Ni, Z. Ren, Nucl. Phys. A 828, 348 (2009)

    Article  ADS  Google Scholar 

  22. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. C 51, 559 (1995)

    Article  ADS  Google Scholar 

  23. C. Xu, Z. Ren, Nucl. Phys. A 753, 174 (2005)

    Article  ADS  Google Scholar 

  24. D. Bai, Z. Ren, Chin. Phys. C 42, 124102 (2018) arXiv:1808.10234 [nucl-th]

    Article  ADS  Google Scholar 

  25. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  26. C. Xu, Z. Ren, Phys. Rev. C 74, 014304 (2006)

    Article  ADS  Google Scholar 

  27. S.A. Gurvitz, G. Kalbermann, Phys. Rev. Lett. 59, 262 (1987)

    Article  ADS  Google Scholar 

  28. S.A. Gurvitz, Phys. Rev. A 38, 1747 (1988)

    Article  ADS  Google Scholar 

  29. S.A. Gurvitz, P.B. Semmes, W. Nazarewicz, T. Vertse, Phys. Rev. A 69, 042705 (2004)

    Article  ADS  Google Scholar 

  30. T. Vertse, K.F. Pal, Z. Balogh, Comput. Phys. Commun. 27, 309 (1982)

    Article  ADS  Google Scholar 

  31. B.A. Brown, Phys. Rev. C 46, 811 (1992)

    Article  ADS  Google Scholar 

  32. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  33. A. Bohr, B.R. Mottlelson, Nuclear Structure, Vol. 1 (World Scientific, Singapore, 1998)

  34. K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Academic Press, New York, 1977)

    Book  Google Scholar 

  35. S. Ohkubo, Phys. Rev. Lett. 74, 2176 (1995)

    Article  ADS  Google Scholar 

  36. D. Ni, Z. Ren, T. Dong, Y. Qian, Phys. Rev. C 87, 024310 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Bai.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, D., Ren, Z. \(\alpha\) clustering slightly above 100Sn in the light of the new experimental data on the superallowed \(\alpha\) decay. Eur. Phys. J. A 54, 220 (2018). https://doi.org/10.1140/epja/i2018-12673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12673-4

Navigation