Skip to main content
Log in

Quantifying quantum correlation via quantum coherence

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Resource theory is applied to quantify the quantum correlation of a bipartite state and a computable measure is proposed. Since this measure is based on quantum coherence, we present another possible physical meaning for quantum correlation, i.e., the minimum quantum coherence achieved under local unitary transformations. This measure satisfies the basic requirements for quantifying quantum correlation and coincides with concurrence for pure states. Since no optimization is involved in the final definition, this measure is easy to compute irrespective of the Hilbert space dimension of the bipartite state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Knill and R. Laflamme, Power of one bit of quantum information, Phys. Rev. Lett. 81(25), 5672 (1998)

    Article  ADS  Google Scholar 

  2. A. Datta, A. Shaji, and C. M. Caves, Quantum discord and the power of one qubit, Phys. Rev. Lett. 100(5), 050502 (2008)

    Article  ADS  Google Scholar 

  3. B. P. Lanyon, M. Barbieri, M. P Almeida, and A. G. White, Experimental quantum computing without entanglement, Phys. Rev. Lett. 101(20), 200501 (2008)

    Article  ADS  Google Scholar 

  4. H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  5. G. Gour and R. W. Spekkens, The resource theory of quantum reference frames: Manipulations and monotones, New J. Phys. 10(3), 033023 (2008)

    Article  ADS  Google Scholar 

  6. F. G. S. L. Brandão and G. Gour, Reversible framework for quantum resource theories, Phys. Rev. Lett. 115(7), 070503 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. B. Coecke, T. Fritz, and R. W. Spekkens, A mathematical theory of resources, Inf. Comput. 250, 59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Demkowicz-Dobrzanski and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113(25), 250801 (2014)

    Article  ADS  Google Scholar 

  9. J. Åberg, Catalytic coherence, Phys. Rev. Lett. 113(15), 150402 (2014)

    Article  ADS  Google Scholar 

  10. V. Narasimhachar and G. Gour, Low-temperature thermodynamics with quantum coherence, Nat. Commun. 6(1), 7689 (2015)

    Article  ADS  Google Scholar 

  11. P. Cwiklinski, M. Studzinski, M. Horodecki, and J. Oppenheim, Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics, Phys. Rev. Lett. 115(21), 210403 (2015)

    Article  ADS  Google Scholar 

  12. M. Lostaglio, D. Jennings, and T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy, Nat. Commun. 6(1), 6383 (2015)

    Article  ADS  Google Scholar 

  13. M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Quantum coherence, time-translation symmetry, and thermodynamics, Phys. Rev. X 5(2), 021001 (2015)

    Article  Google Scholar 

  14. I. Marvian and R. W. Spekkens, Extending Noether’s theorem by quantifying the asymmetry of quantum states, Nat. Commun. 5(1), 3821 (2014)

    Article  ADS  Google Scholar 

  15. F. Levi and F. Mintert, A quantitative theory of coherent delocalization, New J. Phys. 16(3), 033007 (2014)

    Article  ADS  Google Scholar 

  16. L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Dynamics of coherence-induced state ordering under Markovian channels, Front. Phys. 13(5), 130310 (2018)

    Article  Google Scholar 

  17. T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  18. X. D. Yu, D. J. Zhang, G. F. Xu, and D. M. Tong, Alternative framework for quantifying coherence, Phys. Rev. A 94(6), 060302(R) (2016)

    Article  Google Scholar 

  19. X. Yuan, H. Zhou, Z. Cao, and X. Ma, Intrinsic randomness as a measure of quantum coherence, Phys. Rev. A 92(2), 022124 (2015)

    Article  ADS  Google Scholar 

  20. A. Winter and D. Yang, Operational resource theory of coherence, Phys. Rev. Lett. 116(12), 120404 (2016)

    Article  ADS  Google Scholar 

  21. Y. Yao, X. Xiao, L. Ge, and C. P. Sun, Quantum coherence in multipartite systems, Phys. Rev. A 92(2), 022112 (2015)

    Article  ADS  Google Scholar 

  22. Z. Xi, Y. Li, and H. Fan, Quantum coherence and correlations in quantum system, Sci. Rep. 5(1), 10922 (2015)

    Article  ADS  Google Scholar 

  23. J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, Converting coherence to quantum correlations, Phys. Rev. Lett. 116(16), 160407 (2016)

    Article  ADS  Google Scholar 

  24. C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, and T. Byrnes, Distribution of quantum coherence in multipartite systems, Phys. Rev. Lett. 116(15), 150504 (2016)

    Article  ADS  Google Scholar 

  25. T. R. Bromley, M. Cianciaruso, and G. Adesso, Frozen quantum coherence, Phys. Rev. Lett. 114(21), 210401 (2015)

    Article  ADS  Google Scholar 

  26. X. D. Yu, D. J. Zhang, C. L. Liu, and D. M. Tong, Measure-independent freezing of quantum coherence, Phys. Rev. A 93(6), 060303 (2016)

    Article  Google Scholar 

  27. E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, Assisted distillation of quantum coherence, Phys. Rev. Lett. 116(7), 070402 (2016)

    Article  ADS  Google Scholar 

  28. R. A. Horn and C. R. Johnson, Matrix Analysis, Chaps. 2, 5 and 7, New York: Cambridge University Press, 1985

    Book  Google Scholar 

  29. A. Brodutch and K. Modi, Criteria for measures of quantum correlations, Quantum Inf. Comput. 12, 721 (2012)

    MathSciNet  MATH  Google Scholar 

  30. W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  31. P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn, Universal state inversion and concurrence in arbitrary dimensions, Phys. Rev. A 64(4), 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Chitambar and M. H. Hsieh, Relating the resource theories of entanglement and quantum coherence, Phys. Rev. Lett. 117(2), 020402 (2016)

    Article  ADS  Google Scholar 

  33. A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Measuring quantum coherence with entanglement, Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, Converting coherence to quantum correlations, Phys. Rev. Lett. 116(16), 160407 (2016)

    Article  ADS  Google Scholar 

  35. B. Dakić, V. Vedral, and Ç. Brukner, Necessary and sufficient condition for nonzero quantum discord, Phys. Rev. Lett. 105(19), 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  36. J. H. Huang, L. Wang, and S. Y. Zhu, A new criterion for zero quantum discord, New J. Phys. 13(6), 063045 (2011)

    Article  ADS  Google Scholar 

  37. L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80(2), 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson, Unified view of quantum and classical correlations, Phys. Rev. Lett. 104(8), 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  40. C. C. Rulli and M. S. Sarandy, Global quantum discord in multipartite systems, Phys. Rev. A 84(4), 042109 (2011)

    Article  ADS  Google Scholar 

  41. J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities, Front. Phys. 13(1), 130305 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the national Natural Science Foundation of China under Grant Nos. 11664018 and 11664017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Hui Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, GY., Huang, LJ., Pan, JY. et al. Quantifying quantum correlation via quantum coherence. Front. Phys. 13, 130701 (2018). https://doi.org/10.1007/s11467-018-0804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0804-0

Keywords

Navigation