Skip to main content
Log in

Efficient design method for cell allocation in hybrid CMOS/nanodevices using a cultural algorithm with chaotic behavior

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The hybrid CMOS molecular (CMOL) circuit, which combines complementary metal–oxide–semiconductor (CMOS) components with nanoscale wires and switches, can exhibit significantly improved performance. In CMOL circuits, the nanodevices, which are called cells, should be placed appropriately and are connected by nanowires. The cells should be connected such that they follow the shortest path. This paper presents an efficient method of cell allocation in CMOL circuits with the hybrid CMOS/nanodevice structure; the method is based on a cultural algorithm with chaotic behavior. The optimal model of cell allocation is derived, and the coding of an individual representing a cell allocation is described. Then the cultural algorithm with chaotic behavior is designed to solve the optimal model. The cultural algorithm consists of a population space, a belief space, and a protocol that describes how knowledge is exchanged between the population and belief spaces. In this paper, the evolutionary processes of the population space employ a genetic algorithm in which three populations undergo parallel evolution. The evolutionary processes of the belief space use a chaotic ant colony algorithm. Extensive experiments on cell allocation in benchmark circuits showed that a low area usage can be obtained using the proposed method, and the computation time can be reduced greatly compared to that of a conventional genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lin, S. Pi, and Q. Xia, 3D integration of planar crossbar memristive devices with CMOS substrate, Nanotechnology 25(40), 405202 (2014)

    Article  Google Scholar 

  2. N. P. Dasgupta and P. D. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)

    Article  Google Scholar 

  3. Z. L. Pan, L. Chen, G. Z. Zhang, and P. H. Wu, Detecting the micro-defects in the GaAs materials by time resolved emissions, Chin. Sci. Bull. 59(16), 1838 (2014)

    Article  Google Scholar 

  4. A. Sulaev, M. Zeng, S. Q. Shen, S. K. Cho, W. G. Zhu, Y. P. Feng, S. V. Eremeev, Y. Kawazoe, L. Shen, and L. Wang, Electrically tunable in-plane anisotropic magnetoresistance in topological insulator BiSbTeSe2 nanodevices, Nano Lett. 15(3), 2061 (2015)

    Article  ADS  Google Scholar 

  5. R. Tenne, Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles, Front. Phys. 9(3), 370 (2014)

    Article  Google Scholar 

  6. Z. L. Pan, L. Chen, G. Z. Zhang, and P. H. Wu, A singlephoton fault-detection method for nanocircuits that use GaN material, Science China-Technological Sciences, 57(2), 270 (2014)

    Article  Google Scholar 

  7. C. Dong, W. Wang, and S. Haruehanroengra, Efficient logic architectures for CMOL nanoelectronic circuits, Micro & Nano Lett. 1(2), 74 (2006)

    Article  Google Scholar 

  8. D. B. Strukov and K. K. Likharev, CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with twoterminal nanodevices, Nanotechnology 16(6), 888 (2005)

    Article  ADS  Google Scholar 

  9. Z. Abid and M. Liu, 3D integration of CMOL structures for FPGA applications, IEEE Trans. Comput. 60(4), 463 (2011)

    Article  MathSciNet  Google Scholar 

  10. M. S. Zaveri and D. Hammerstrom, CMOL/CMOS implementations of bayesian polytree inference: Digital and mixed-signal architectures and performance/price, IEEE Trans. NanoTechnol. 9(2), 194 (2010)

    Article  ADS  Google Scholar 

  11. A. Afifi, A. Ayatollahi, and F. Raissi, CMOL implementation of spiking neurons and spike-timing dependent plasticity, International Journal of Circuit Theory and Applications 39(4), 357 (2011)

    Article  MATH  Google Scholar 

  12. Z. Abid, A. Almaaitah, M. Barua, and W. Wang, Efficient CMOL gate designs for cryptography applications, IEEE Trans. NanoTechnol. 8(3), 315 (2009)

    Article  ADS  Google Scholar 

  13. G. Chen, X. Y. Song, and P. Hu, A theoretical investigation on CMOL FPGA cell assignment problem, IEEE Trans. NanoTechnol. 8(3), 322 (2009)

    Article  ADS  Google Scholar 

  14. W. N. Hung, C. Gao, X. Song, and D. Hammerstrom, Defect-tolerant CMOL cell assignment via satisfiability, IEEE Sens. J. 8(6), 823 (2008)

    Google Scholar 

  15. Z. Chu, Y. Xia, W. N. Hung, and L. Wang, A memetic approach for nanoscale hybrid circuit cell mapping, 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools, Lille, France, pp 681–688 (2010)

    Google Scholar 

  16. Z. Chu, Y. Xia, L. Wang, and M. Hu, CMOL cell assignment based on dynamic interchange, IEEE 8th International Conference on ASIC, Changsha, China, 921–924 (2009)

    Google Scholar 

  17. X. J. Wang and L. Y. Wang, A pseudo-boolean programming approach for CMOL cell assignment, IEEE International Conference on Electronics, Communications and Control, Ningbo, China, pp 1265–1268 (2011)

    Google Scholar 

  18. M. H. Magnusson, B. J. Ohlsson, M. T. Bjork, K. A. Dick, M. T. Borgström, K. Deppert, and L. Samuelson, Semiconductor nanostructures enabled by aerosol technology, Front. Phys. 9(3), 398 (2014)

    Article  Google Scholar 

  19. K. Shao, N. Ding, S. Huang, S. Ren, Y. Zhang, Y. Kuang, Y. Guo, H. Ma, S. An, Y. Li, and C. Jiang, Smart nanodevice combined tumor-specific vector with cellular microenvironment-triggered property for highly effective antiglioma therapy, ACS Nano 8(2), 1191 (2014)

    Article  Google Scholar 

  20. H. Y. Fan, S. Wang, and L. Y. Hu, Evolution of the singlemode squeezed vacuum state in amplitude dissipative channel, Front. Phys. 9(1), 74 (2014)

    Article  Google Scholar 

  21. M. Z. Ali and R. G. Reynolds, Cultural algorithms: A Tabu search approach for the optimization of engineering design problems, Soft Comput. 18(8), 1631 (2014)

    Article  Google Scholar 

  22. Q. F. Luo, Y. Q. Zhou, P. G. Guo, and X. Chen, Functional network design using parallel cultural algorithm, Appl. Math. Inf. Sci. 8(4), 1949 (2014)

    Article  Google Scholar 

  23. S. Srinivasan and S. Ramakrishnan, A social intelligent system for multi-objective optimization of classification rules using cultural algorithms, Computing 95(4), 327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. E. M. Sentovich, K. J. Singh, and L. Lavagno, SIS: A system for sequential circuit synthesis, Technical Report UCB/ERL M92/41, University of California, Berkeley, 1992

    Google Scholar 

  25. D. B. Strukov and K. K. Likharev, A reconfigurable architecture for hybrid CMOS/nanodevice circuits, 14th ACM International Symposium on Field Programmable, New York, pp 131–140 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Liang Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, ZL., Chen, L. & Zhang, GZ. Efficient design method for cell allocation in hybrid CMOS/nanodevices using a cultural algorithm with chaotic behavior. Front. Phys. 11, 116201 (2016). https://doi.org/10.1007/s11467-015-0531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0531-8

Keywords

Navigation