Skip to main content
Log in

Corrugated single layer templates for molecules: From h-BN nanomesh to graphene based quantum dot arrays

  • Research Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

Functional nano-templates enable self-assembly of otherwise impossible arrangements of molecules. A particular class of such templates is that of sp 2 hybridized single layers of hexagonal boron nitride or carbon (graphene) on metal supports. If the substrate and the single layer have a lattice mismatch, superstructures are formed. On substrates like rhodium or ruthenium these superstructures have unit cells with ∼3-nm lattice constant. They are corrugated and contain sub-units, which behave like traps for molecules or quantum dots, which are small enough to become operational at room temperature. For graphene on Rh(111) we emphasize a new structural element of small extra hills within the corrugation landscape. For the case of molecules like water it is shown that new phases assemble on such templates, and that they can be used as “nano-laboratories” where many individual processes are studied in parallel. Furthermore, it is shown that the h-BN/Rh(111) nanomesh displays a strong scanning tunneling microscopy-induced luminescence contrast within the 3 nm unit cell which is a way to address trapped molecules and/or quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nature Mater., 2007, 6: 183

    Article  ADS  Google Scholar 

  2. C. Oshima and A. Nagashima, J. Phys.: Condens. Matter, 1997, 9: 1

    Article  ADS  Google Scholar 

  3. T. Greber, Handbook of Nanophysics: Functional Nanomaterials, London: Taylor & Francis Books, 2010

    Google Scholar 

  4. H. Dil, J. Lobo-Checa, R. Laskowski, P. Blaha, S. Berner, J. Osterwalder, and T. Greber, Science, 2008, 319: 1824

    Article  ADS  Google Scholar 

  5. T. Brugger, S. Günther, B. Wang, J. H. Dil, M. L. Bocquet, J. Osterwalder, J. Wintterlin, and T. Greber, Phys. Rev. B, 2009, 79: 045407

    Article  ADS  Google Scholar 

  6. T. Greber, e-J. Surf. Sci. Nanotech., 2010, 8: 62

    Article  Google Scholar 

  7. M. Morscher, M. Corso, T. Greber, and J. Osterwalder, Sur. Sci., 2006, 600: 3280

    Article  ADS  Google Scholar 

  8. T. Greber, M. Corso, and J. Osterwalder, Sur. Sci., 2009, 603: 1373

    Article  ADS  Google Scholar 

  9. A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, Phys. Rev. Lett., 2006, 97: 215501

    Article  ADS  Google Scholar 

  10. M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Science, 2004, 303: 217

    Article  ADS  Google Scholar 

  11. S. Berner, M. Corso, R. Widmer, O. Groening, R. Laskowski, P. Blaha, K. Schwarz, A. Goriachko, H. Over, S. Gsell, et al., Angew. Chem. Int. Ed., 2007, 46: 5115

    Article  Google Scholar 

  12. H. G. Zhang, H. Hu, Y. Pan, J. H. Mao, M. Gao, H. M. Guo, S. X. Du, T. Greber, and H. J. Gao, J. Phys.: Condens. Matter, 2010, 22: 302001

    Article  Google Scholar 

  13. A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Mårtensson, Phys. Rev. B, 2008, 78: 073401

    Article  ADS  Google Scholar 

  14. W. Auwärter, T. J. Kreutz, T. Greber, and J. Osterwalder, Sur. Sci., 1999, 429: 229

    Article  ADS  Google Scholar 

  15. G. B. Grad, P. Blaha, K. Schwarz, W. Aüwarter, and T. Greber, Phys. Rev. B, 2003, 68: 085404

    Article  ADS  Google Scholar 

  16. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum., 2007, 78: 013705

    Article  ADS  Google Scholar 

  17. F. Müller, H. Sachdev, S. Hüfner, A. J. Pollard, E. W. Perkins, J. C. Russell, P. H. Beton, S. Gsell, M. Fischer, M. Schreck, et al., Small, 2009, 5: 2291

    Article  Google Scholar 

  18. M. Iannuzzi, Private Communication

  19. H. F. Ma, T. Brugger, S. Berner, Y. Ding, M. Iannuzzi, J. Hutter, J. Osterwalder, and T. Greber, ChemPhysChem, 2010, 11: 399

    Article  Google Scholar 

  20. A. J. Pollard, E. W. Perkins, N. A. Smith, A. Saywell, G. Goretzki, A. G. Phillips, S. P. Argent, H. Sachdev, F. Müller, S. Hüfner, et al., Angew. Chem. Int. Edit., 2010, 49: 1794

    Article  Google Scholar 

  21. J. H. Mao, H. G. Zhang, Y. H. Jiang, Y. Pan, M. Gao, W. D. Xiao, and H. J. Gao, J. Am. Chem. Soc., 2009, 131: 14136

    Article  Google Scholar 

  22. J. Zhang, V. Sessi, C. H. Michaelis, I. Brihuega, J. Honolka, K. Kern, R. Skomski, X. Chen, G. Rojas, and A. Enders, Phys. Rev. B, 2008, 78: 165430

    Article  ADS  Google Scholar 

  23. Y. Pan, M. Gao, L. Huang, F. Liu, and H. J. Gao, Appl. Phys. Lett., 2009, 95: 093106

    Article  ADS  Google Scholar 

  24. A. Goriachko, Y. B. He, M. Knapp, H. Over, M. Corso, T. Brugger, S. Berner, J. Osterwalder, and T. Greber, Langmuir, 2007, 23: 2928

    Article  Google Scholar 

  25. R. Laskowski, P. Blaha, T. Gallauner, and K. Schwarz, Phys. Rev. Lett., 2007, 98: 106802

    Article  ADS  Google Scholar 

  26. J. K. Gimzewski, B. Reihl, J. H. Coombs, and R. R. Schlittler, Z. Phys. B: Condens. Matter, 1988, 72: 497

    Article  ADS  Google Scholar 

  27. S. W. Wu, N. Ogawa, and W. Ho, Science, 2006, 312: 1362

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Greber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Hf., Thomann, M., Schmidlin, J. et al. Corrugated single layer templates for molecules: From h-BN nanomesh to graphene based quantum dot arrays. Front. Phys. China 5, 387–392 (2010). https://doi.org/10.1007/s11467-010-0137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-010-0137-0

Keywords

Navigation