Skip to main content
Log in

Recent advances on thermoelectric materials

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

By converting waste heat into electricity through the thermoelectric power of solids without producing greenhouse gas emissions, thermoelectric generators could be an important part of the solution to today’s energy challenge. There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications. In this paper, we will review recent efforts on improving thermoelectric efficiency. Particularly, several novel proof-of-principle approaches such as phonon disorder in phonon-glass-electron crystals, low dimensionality in nanostructured materials and charge-spin-orbital degeneracy in strongly correlated systems on thermoelectric performance will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basic Research Needs for Solar Energy Utilization, Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, USA: DOE, April 18–21, 2005

  2. C. Wood, Rep. Prog. Phys., 1988, 51: 459

    Article  ADS  Google Scholar 

  3. F. J. DiSalvo, Science, 1999, 285: 703

    Article  Google Scholar 

  4. G. S. Nolas, D. T. Morelli, and T. M. Tritt, Annu. Rev. Mater. Sci., 1999, 29: 89

    Article  ADS  Google Scholar 

  5. S. B. Riffat and X. L. Ma, Appl. Thermal Engineering, 2003, 23: 913

    Article  Google Scholar 

  6. S. B. Riffat and X. L. Ma, Int. J. Energy Res., 2004, 28:753

    Article  Google Scholar 

  7. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater., 2007, 19: 1043

    Article  Google Scholar 

  8. G. J. Snyder and E. S. Toberer, Nature Materials, 2008, 7: 105

    Article  ADS  Google Scholar 

  9. http://chem.ch.huji.ac.il/history/seebeck.html, accessed Jan. 30, 2008

  10. http://www.thermoelectrics.caltech.edu/history page.htm, accessed Jan. 30, 2008

  11. H. J. Goldsmid, Electronic Refrigeration, London: Pion, 1986: 10

    Google Scholar 

  12. G. D. Mahan, and J. O. Sofo, Proc. Natl. Acad. Sci. USA, 1996, 93: 7436

    Article  ADS  Google Scholar 

  13. J. Yang, Designing Advanced Thermoelectric Materials for Automotive Applications, 2004 DOE/EPRI High Efficiency Thermoelectric Workshop, CA, San Diego, Feb. 19, 2004

  14. F. R. Stabler, Mater. Res. Soc. Symp. Proc., 2006, Vol. 886, # 0886-F01-04.1

  15. Data obtained from database of “ISI Web of Knowledge” with search option of “thermoelectric or thermoelectrics” in Title only, http://www.isiwebofknowledge.com, accessed March 19, 2008

  16. G. K. H. Madsen, J. Am. Chem. Soc., 2006, 128: 12140

    Article  Google Scholar 

  17. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling Information, London: Infosearch, 1957

    Google Scholar 

  18. T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, Phys. Rev. B, 2003, 68: 125210

    Article  ADS  Google Scholar 

  19. T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and G. D. Mahan, Phys. Rev. B, 2003, 68: 085201

    Article  ADS  Google Scholar 

  20. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Austria: Karlheinz Schwarz, Techn. Universität Wien, 2001, ISBN 3-9501031-1-2

  21. P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136: B864

    Article  ADS  MathSciNet  Google Scholar 

  22. W. Kohn and L. J. Sham, Phys. Rev., 1965, 140: A1133

    Article  ADS  MathSciNet  Google Scholar 

  23. B. R. Nag, Electron Transport in Compound Semiconductors, New York: Springer, 1980: 171

    Google Scholar 

  24. T. Thonhauser, T. J. Scheidemantel, and J. O. Sofo, Appl. Phys. Lett., 2004, 85: 588

    Article  ADS  Google Scholar 

  25. G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun., 2006, 175: 67

    Article  ADS  Google Scholar 

  26. Y. Wang, X. Chen, T. Cui, Y. Niu, Y. Wang, M. Wang, Y. Ma, and G. Zou, Phys. Rev. B, 2007, 76: 155127

    Article  ADS  Google Scholar 

  27. R. R. Heikes and R. W. Ure (eds.), Thermoelectricity: Science and Energy, New York: Interscience, 1961

    Google Scholar 

  28. G. Beni, Phys. Rev. B, 1974, 10: 2186

    Article  ADS  Google Scholar 

  29. P. M. Chaikin and G. Beni, Phys. Rev. B, 1976, 13: 647

    Article  ADS  Google Scholar 

  30. R. Kubo, J. Phys. Soc. Jpn., 1957, 12: 1203

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Oguri and S. Maekawa, Phys. Rev. B, 1990, 41: 6977

    Article  ADS  Google Scholar 

  32. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B, 2000, 62: 6869

    Article  ADS  Google Scholar 

  33. M. M. Zemljic and P. Prelovsek, Phys. Rev. B, 2005, 71: 085110

    Article  ADS  Google Scholar 

  34. S. Mukerjee, Phys. Rev. B, 2005, 72: 195109

    Article  ADS  Google Scholar 

  35. W. Koshibae and S. Maekawa, Phys. Rev. Lett., 2001, 87: 236603

    Article  ADS  Google Scholar 

  36. M. R. Peterson, S. Mukerjee, B. S. Shastry, and J. O. Haerter, Phys. Rev. B, 2007, 76: 12511

    Google Scholar 

  37. J. Callaway, Phys. Rev., 1959, 113: 1046

    Article  MATH  ADS  Google Scholar 

  38. J. Callaway and H. C. Von Baeyer, Phys. Rev., 1960, 120: 1149

    Article  MATH  ADS  Google Scholar 

  39. J. M. Ziman, Phil. Mag., 1956, 1: 191

    Article  ADS  Google Scholar 

  40. J. M. Ziman, Phil. Mag., 1957, 2: 292

    Article  ADS  Google Scholar 

  41. E. F. Steigmeier and B. Abeles, Phys. Rev., 1964, 136: A1149

    Article  ADS  Google Scholar 

  42. W. P. Mason and T. B. Bateman, Phys. Rev. Lett., 1963, 10: 151

    Article  ADS  Google Scholar 

  43. J. Hejtmánek, M. Veverka, K. Knížek, H. Fujishiro, S. Hebert, Y. Klein, A. Maignan, C. Bellouard, and B. Lenoir, Mater. Res. Soc. Symp. Proc., 2006, Vol. 886, # 0886-F01-07.1

  44. P. Oleynikov, L. Wu, J. C. Zheng, V.V. Volkov, R.F. Klie, Y. Zhu, H. Inada, K. Nakamura, and R. Twestern, Structural analysis of layered Ca3Co4O9 thermoelectrics using aberration corrected STEM and EELS, Advanced Electron Microscopy in Materials Physics Workshop, Nov. 7–8, 2007, Brookhaven National Laboratory, USA

    Google Scholar 

  45. P. Oleynikov, J. Hanson, J. C. Zheng, L. Wu, V. Volkov, Q. Jie, Q. Li, and Y. Zhu, Electron Microscopy Study of Layered Thermoelectric Cobalt Oxide [Ca2CoO3]0.62CoO2, Workshop of “Electronic Structure and Functionality of Thermoelectric Materials”, Reykjavik, Iceland, Jul. 30.Aug. 1, 2007

  46. L. D. Hicks and M. S. Dresselhaus, Phys. Rev., 1993, 47: 12727

    Google Scholar 

  47. L. D. Hicks and M. S. Dresselhaus, Phys. Rev., 1993, 47: 16631

    Article  Google Scholar 

  48. G. Chen, Phys. Rev. B, 1998, 57: 14958

    Article  ADS  Google Scholar 

  49. A. Balandin and K. L. Wang, Phys. Rev. B, 1998, 58: 1544

    Article  ADS  Google Scholar 

  50. S. G. Walkauskas, D. A. Broido, K. Kempa, and T. L. Reinecke, J. Appl. Phys., 1999, 85: 2579

    Article  ADS  Google Scholar 

  51. R. Venkatasubramanian, Phys. Rev. B, 2000, 61: 3091

    Article  ADS  Google Scholar 

  52. J. Zou and A. Balandin, J. Appl. Phys., 2001, 89: 2932

    Article  ADS  Google Scholar 

  53. R. Yang, G. Chen, and M. S. Dresselhaus, Nano Lett., 2005, 5: 1111

    Article  ADS  Google Scholar 

  54. M.-J. Huang, M.-Y. Chong, and T.-M. Chang, J. Appl. Phys., 2006, 99: 114318

    Article  ADS  Google Scholar 

  55. A. Minnich and G. Chen, Appl. Phys. Lett., 2007, 91: 073105

    Article  ADS  Google Scholar 

  56. J. Wang and J.-S. Wang, J. Phys.: Condens. Matter, 2007,19: 236211

    Article  ADS  Google Scholar 

  57. A.I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature, 2008, 451: 163

    Article  ADS  Google Scholar 

  58. H. J. Goldsmid and G. S. Nolas, 20th International Conference on Themoelectrics, 2001

  59. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature, 2001, 413: 597

    Article  ADS  Google Scholar 

  60. G. A. Slack and V. Tsoukala, J. Appl. Phys., 1994, 76: 1665

    Article  ADS  Google Scholar 

  61. B. C. Sales, D. Mandrus, and R. K. Williams, Science, 1996, 272: 1325

    Article  ADS  Google Scholar 

  62. G. S. Nolas, J. L. Cohn, G. Slack, and S. B. Schujman, Appl. Phys. Lett., 1998, 73: 178

    Article  ADS  Google Scholar 

  63. J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A. Slack, Phys. Rev. Lett., 1999, 82: 779

    Article  ADS  Google Scholar 

  64. J. F. Meng, N. V. Chandra Shekar, J. V. Badding, and G. S. Nolas, J. Appl. Phys., 2001, 89: 1730

    Article  ADS  Google Scholar 

  65. A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, and Y. Grin, Nature, 2006, 443: 320

    Article  ADS  Google Scholar 

  66. C. Uher, J. Yang, S. Hu, D. T. Morelli, and G. P. Meisner, Phys. Rev. B, 1999, 59: 8615

    Article  ADS  Google Scholar 

  67. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science, 2004, 303: 816

    Article  ADS  Google Scholar 

  68. Q. Jie, J. Zhou, L. Wu, J. C. Zheng, Y. Zhu, Q. Li, and J. Yang, Impact of Nanoscale Substructures on the Thermoelectric Properties of AgPbmSbTe2+m , 2007 MRS Fall Meeting, Boston (U3.8)

    Google Scholar 

  69. L. Wu, J. C. Zheng, Q. Jie, J. Zhou, Q. Li, Y. Zhu, and J. Yang, Measurement of Charge Distribution in Thermoelectric AgPbmSbTe2+m by Quantitative Electron Diffraction, Workshop of “Electronic Structure and Functionality of Thermoelectric Materials”, Reykjavik, Iceland, Jul. 30. Aug. 1, 2007

  70. Y. Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Nature, 2003, 423: 425

    Article  ADS  Google Scholar 

  71. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nkanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nature Materials, 2007, 6: 129

    Article  ADS  Google Scholar 

  72. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett., 2006, 96: 045901

    Article  ADS  Google Scholar 

  73. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature, 2008, 451: 163

    Article  ADS  Google Scholar 

  74. A. I. Boukai, Nature, 2008, 451: 168

    Article  ADS  Google Scholar 

  75. P. Reddy, Science, 2007, 315: 1568

    Article  ADS  Google Scholar 

  76. G. A. Slack, In: CRC handbook of Thermoelectrics, edited by D. M. Rowe, Boca Raton: CRC Press, 1995: 407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-cheng Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Jc. Recent advances on thermoelectric materials. Front. Phys. China 3, 269–279 (2008). https://doi.org/10.1007/s11467-008-0028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-008-0028-9

Keywords

PACS numbers

Navigation