Skip to main content
Log in

Achieving desired nodal lines in freely vibrating structures via material-field series-expansion topology optimization

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Accurately controlling the nodal lines of vibrating structures with topology optimization is a highly challenging task. The major difficulties in this type of problem include a large number of design variables, the highly nonlinear and multi-peak characteristics of iteration, and the changeable orders of eigenmodes. In this study, an effective material-field series-expansion (MFSE)-based topology optimization design strategy for precisely controlling nodal lines is proposed. Here, two typical optimization targets are established: (1) minimizing the difference between structural nodal lines and their desired positions, and (2) keeping the position of nodal lines within the specified range while optimizing certain dynamic performance. To solve this complex optimization problem, the structural topology of structures is first represented by a few design variables on the basis of the MFSE model. Then, the problems are effectively solved using a sequence Kriging-based optimization algorithm without requiring design sensitivity analysis. The proposed design strategy inherently circumvents various numerical difficulties and can effectively obtain the desired vibration modes and nodal lines. Numerical examples are provided to validate the proposed topology optimization models and the corresponding solution strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

‖·‖2 :

2-norm

C :

Correlation matrix

C d(r):

Vector \({\{C({\boldsymbol{r}},{{\boldsymbol{r}}_1}),\,\,C({\boldsymbol{r}},{{\boldsymbol{r}}_2}), \ldots,C({\boldsymbol{r}},{{\boldsymbol{r}}_{{N_{{\rm{MFP}}}}}})\} ^{\rm{T}}}\)

E :

Young’s modulus

E 0 :

Young’s modulus of the considered solid material

E min :

Small values of Young’s modulus for avoiding single-element matrices

\({f_{{m_q}}}\) :

Nodal line measurement function

\({g_{{m_q}}}\) :

Constraint function

K′ :

Number of current nodal lines

K :

Structural stiffness matrix

l c :

Given correlation length

\(L_1^ {\ast},L_2^{\ast}, \ldots,L_K^ {\ast}\) :

Desired nodal lines

\({L_{k,{m_q}}}\) :

Current nodal line

L m :

Corresponding nodal lines

M :

Mass matrix

N MFP :

Number of material points

p :

Penalty parameter

r :

Coordinate vector

r i :

Material points

\({\boldsymbol{r}}_{k,j}^ \ast \) :

Desired node

\({{\boldsymbol{r}}_{k,j,{m_q}}}\) :

Current node

\({\boldsymbol{u}},{\boldsymbol{\ddot u}}\) :

Vectors of the degrees of freedom and accelerations, respectively

α :

Weighting factor

β :

Parameter that controls the smoothness of the mapping

ρ :

Mass density

ρ 0 :

Mass density of the considered solid material

ρ min :

Small values of mass density for avoiding single-element matrices

η :

Vector of the undetermined coefficients or design variables

μ 1, μ 2 :

Poisson’s ratios

λ m :

mth eigenvalue

ω m :

mth eigenfrequency

φ (r):

Continuous material-field function

Φ :

Corresponding eigenvectors

Φ m :

Corresponding eigenmode

χ(r):

Structural topology

Ωdes :

Design domain

ζ(ω i):

User-specified function for some specific order eigenfrequencies

Δj :

Allowable deviation of the current nodal lines from the desired nodal lines

Λ :

Diagonal matrix composed of the first N largest eigenvalues

References

  1. Grandhi R. Structural optimization with frequency constraints—a review. AIAA Journal, 1993, 31(12): 2296–2303

    Article  MATH  Google Scholar 

  2. Zhu J H, Zhang W H, Xia L. Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering, 2016, 23(4): 595–622

    Article  MathSciNet  MATH  Google Scholar 

  3. Rubio W M, Silva E C N, Paulino G H. Toward optimal design of piezoelectric transducers based on multifunctional and smoothly graded hybrid material systems. Journal of Intelligent Material Systems and Structures, 2009, 20(14): 1725–1746

    Article  Google Scholar 

  4. Sanchez-Rojas J L, Hernando J, Donoso A, Bellido J C, Manzaneque T, Ababneh A, Seidel H, Schmid U. Modal optimization and filtering in piezoelectric microplate resonators. Journal of Micromechanics and Microengineering, 2010, 20(5): 055027

    Article  Google Scholar 

  5. Yu Y, Jang I G, Kim I K, Kwak B M. Nodal line optimization and its application to violin top plate design. Journal of Sound and Vibration, 2010, 329(22): 4785–4796

    Article  Google Scholar 

  6. Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197–224

    Article  MathSciNet  MATH  Google Scholar 

  7. Bendsøe M P. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193–202

    Article  Google Scholar 

  8. Bendsøe M P, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 1999, 69(9–10): 635–654

    MATH  Google Scholar 

  9. Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5): 885–896

    Article  Google Scholar 

  10. Querin O M, Steven G P, Xie Y M. Evolutionary structural optimization (ESO) using a bidirectional algorithm. Engineering Computations, 1998, 15(8): 1031–1048

    Article  MATH  Google Scholar 

  11. Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 227–246

    Article  MathSciNet  MATH  Google Scholar 

  12. Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363–393

    Article  MathSciNet  MATH  Google Scholar 

  13. Takezawa A, Nishiwaki S, Kitamura M. Shape and topology optimization based on the phase field method and sensitivity analysis. Journal of Computational Physics, 2010, 229(7): 2697–2718

    Article  MathSciNet  MATH  Google Scholar 

  14. Díaaz A R, Kikuchi N. Solutions to shape and topology eigenvalue optimization problems using a homogenization method. International Journal for Numerical Methods in Engineering, 1992, 35(7): 1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  15. Pedersen N L. Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization, 2000, 20(1): 2–11

    Article  Google Scholar 

  16. Allaire G, Aubry S, Jouve F. Eigenfrequency optimization in optimal design. Computer Methods in Applied Mechanics and Engineering, 2001, 190(28): 3565–3579

    Article  MathSciNet  MATH  Google Scholar 

  17. Du J B, Olhoff N. Topology optimization of continuum structures with respect to simple and multiple eigenfrequencies. In: Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro: International Society for Structural and Multidisciplinary Optimization, 2005

  18. Ma Z D, Cheng H C, Kikuchi N. Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method. Computing Systems in Engineering, 1994, 5(1): 77–89

    Article  Google Scholar 

  19. Yoon G H. Structural topology optimization for frequency response problem using model reduction schemes. Computer Methods in Applied Mechanics and Engineering, 2010, 199(25–28): 1744–1763

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma Z D, Kikuchi N, Cheng H C. Topology design for vibrating structures. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1–4): 259–280

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang X P, Kang Z. Dynamic topology optimization of piezoelectric structures with active control for reducing transient response. Computer Methods in Applied Mechanics and Engineering, 2014, 281: 200–219

    Article  MathSciNet  MATH  Google Scholar 

  22. Takezawa A, Daifuku M, Nakano Y, Nakagawa K, Yamamoto T, Kitamura M. Topology optimization of damping material for reducing resonance response based on complex dynamic compliance. Journal of Sound and Vibration, 2016, 365: 230–243

    Article  Google Scholar 

  23. Jensen J S, Pedersen N L. On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. Journal of Sound and Vibration, 2006, 289(4–5): 967–986

    Article  Google Scholar 

  24. Du J B, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidisciplinary Optimization, 2007, 34(2): 91–110

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu P, Zhang X P, Luo Y J. Topological design of freely vibrating bi-material structures to achieve the maximum band gap centering at a specified frequency. Journal of Applied Mechanics, 2021, 88(8): 081003

    Article  Google Scholar 

  26. Tcherniak D. Topology optimization of resonating structures using SIMP method. International Journal for Numerical Methods in Engineering, 2002, 54(11): 1605–1622

    Article  MATH  Google Scholar 

  27. Nishiwaki S, Maeda Y, Izui K, Yoshimura M, Matsui K, Terada K. Topology optimization of mechanical structures targeting vibration characteristics. Journal of Environmental and Engineering, 2007, 2(3): 480–492

    Article  Google Scholar 

  28. Maeda Y, Nishiwaki S, Izui K, Yoshimura M, Matsui K, Terada K. Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. International Journal for Numerical Methods in Engineering, 2006, 67(5): 597–628

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsai T D, Cheng C C. Structural design for desired eigenfrequencies and mode shapes using topology optimization. Structural and Multidisciplinary Optimization, 2013, 47(5): 673–686

    Article  MathSciNet  MATH  Google Scholar 

  30. Xue L, Wen G L, Wang H X, Liu J. Eigenvectors-guided topology optimization to control the mode shape and suppress the vibration of the multi-material plate. Computer Methods in Applied Mechanics and Engineering, 2022, 391: 114560

    Article  MathSciNet  MATH  Google Scholar 

  31. Nakasone P H, Silva E C N. Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. Journal of Intelligent Material Systems and Structures, 2010, 21(16): 1627–1652

    Article  Google Scholar 

  32. Rubio W M, Silva E C N, Paulino G H. Toward optimal design of piezoelectric transducers based on multifunctional and smoothly graded hybrid material systems. Journal of Intelligent Material Systems and Structures, 2009, 20(14): 1725–1746

    Article  Google Scholar 

  33. Rubio W M, Paulino G H, Silva E C N. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts. Smart Materials and Structures, 2011, 20(2): 025009

    Article  Google Scholar 

  34. Giannini D, Braghin F, Aage N. Topology optimization of 2D inplane single mass MEMS gyroscopes. Structural and Multidisciplinary Optimization, 2020, 62(4): 2069–2089

    Article  MathSciNet  Google Scholar 

  35. Giannini D, Aage N, Braghin F. Topology optimization of MEMS resonators with target eigenfrequencies and modes. European Journal of Mechanics—A/Solids, 2022, 91: 104352

    Article  MathSciNet  MATH  Google Scholar 

  36. Xiang J W, Zhang C L, Zhou C R, Zhang A Z. Structural dynamics optimum design with given frequencies and position of mode shape node lines. Chinese Journal of Computational Mechanics, 1995, 4: 401–408 (in Chinese)

    Google Scholar 

  37. Chen H, Zhou C. Structural design subjected to multiple frequencies positions of nodal lines and other constraints. Chinese Journal of Applied Mechanics, 1996, 1: 59–63 (in Chinese)

    Google Scholar 

  38. Liu Z X, Qian Y J, Yang X D, Zhang W. Panel flutter mechanism of rectangular solar sails based on travelling mode analysis. Aerospace Science and Technology, 2021, 118: 107015

    Article  Google Scholar 

  39. Gong D, Zhou J S, Sun W J, Sun Y, Xia Z H. Method of multimode vibration control for the carbody of high-speed electric multiple unit trains. Journal of Sound and Vibration, 2017, 409: 94–111

    Article  Google Scholar 

  40. Li F, Wang J, Shi H, Wu P. Research on causes and countermeasures of abnormal flexible vibration of car body for electric multiple units. Journal of Mechanical Engineering, 2019, 55(12): 178–188 (in Chinese)

    Article  Google Scholar 

  41. Mao Z Y, Chen G P, He H. Evolutionary optimization design of the structural dynamic characteristics under multi constraints. Applied Mechanics and Materials, 2010, 29–32: 906–911 (in Chinese)

    Article  Google Scholar 

  42. Kim T S, Kim Y Y. Mac-based mode-tracking in structural topology optimization. Computers & Structures, 2000, 74(3): 375–383

    Article  Google Scholar 

  43. Luo Y J, Xing J, Kang Z. Topology optimization using material-field series expansion and kriging-based algorithm: an effective non-gradient method. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112966

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang X P, Luo Y J, Yan Y, Liu P, Kang Z. Photonic band gap material topological design at specified target frequency. Advanced Theory and Simulations, 2021, 4(10): 2100125

    Article  Google Scholar 

  45. Yan Y, Liu P, Zhang X P, Luo Y J. Photonic crystal topological design for polarized and polarization-independent band gaps by gradient-free topology optimization. Optics Express, 2021, 29(16): 24861–24883

    Article  Google Scholar 

  46. Zhang X P, Xing J, Liu P, Luo Y J, Kang Z. Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials. Extreme Mechanics Letters, 2021, 42: 101126

    Article  Google Scholar 

  47. Luo Y J, Bao J W. A material-field series-expansion method for topology optimization of continuum structures. Computers & Structures, 2019, 225: 106122

    Article  Google Scholar 

  48. Kreisselmeier G, Steinhauser R. Systematic control design by optimizing a vector performance index. IFAC Proceedings Volumes, 1980, 12(7): 113–117

    Article  MATH  Google Scholar 

  49. He J J, Kang Z. Achieving directional propagation of elastic waves via topology optimization. Ultrasonics, 2018, 82: 1–10

    Article  Google Scholar 

  50. Stolpe M, Svanberg K. An alternative interpolation scheme for minimum compliance topology optimization. Structural and Multidisciplinary Optimization, 2001, 22(2): 116–124

    Article  Google Scholar 

  51. Luo Y J, Zhan J J, Xing J, Kang Z. Non-probabilistic uncertainty quantification and response analysis of structures with a bounded field model. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 663–678

    Article  MathSciNet  MATH  Google Scholar 

  52. Su H L, Zhao X D, Zhao C S. Study on moving mechanism of a rotatory type standing wave ultrasonic motor with single phase driver. Piezoelectric & Acoustooptic, 2001, 23(4): 306–308,312

    Google Scholar 

  53. Qian X H, Shen M H. A new standing-wave linear moving ultrasonic motor based on two bending modes. Applied Mechanics and Materials, 2011, 101–102: 140–143

    Article  Google Scholar 

  54. Liu Z, Wang H, Yang P, Dong Z Y, Zhang L H. Dynamic modeling and analysis of bundled linear ultrasonic motors with non-ideal driving. Ultrasonics, 2022, 124: 106717

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2022A1515240059), the National Natural Science Foundation of China (Grant No. 52275237), and the Shenzhen Stability Support Key Program in Colleges and Universities of China (Grant No. GXWD202208171333 29001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjun Luo.

Ethics declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhang, X., He, J. et al. Achieving desired nodal lines in freely vibrating structures via material-field series-expansion topology optimization. Front. Mech. Eng. 18, 42 (2023). https://doi.org/10.1007/s11465-023-0758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-023-0758-y

Keywords

Navigation