Skip to main content
Log in

Influence of kinematic redundancy on the singularity-free workspace of parallel kinematic machines

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper the effect of kinematic redundancy in order to reduce the singularity loci of the direct kinematics and to increase the operational, i.e., singularityfree, workspace is demonstrated. The proposed approach consists of additional prismatic actuators allowing one or more base joints to move linearly. As a result, a selective reconfiguration can be performed in order to avoid singular configurations. Exemplarily, kinematically redundant schemes of four structures, the 3RRR, the 3RPR, the 6UPS, and the 6RUS, are considered. The relationship between the redundancy and the operational workspace is studied and several analysis examples demonstrate the effectiveness of the proposed concept. Furthermore, the additional benefit of an increasing number of redundant actuators is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gosselin C M, Angeles J. Singularity analysis of closed-loop kinematic chains. In: Proceedings of IEEE Transactions on Robotics and Automation, 1990, 6(3):281–290

    Article  Google Scholar 

  2. Sefrioui J, Gosselin C M. On the quadratic nature of the singularity curves of planar three-degree-of-freedom parallel manipulators. Mechanism and Machine Theory, 1995, 30(4):533–551

    Article  Google Scholar 

  3. Gosselin C M, Wang J G. Singularity loci of planar parallel manipulators with revolute actuators. Robotics and Autonomous Systems, 1997, 21(4):377–398

    Article  Google Scholar 

  4. Merlet J P. Redundant parallel manipulators. Laboratory Robotics and Automation, 1996, 8(1):17–24

    Article  Google Scholar 

  5. Kock S, Schumacher W. A parallel x-y manipulator with actuation redundancy for high-speed and active-stiffness applications. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, 1998, 3:2295–2300

    Google Scholar 

  6. Zhang L J, Li Y Q, Huang Z. Analysis of the workspace and singularity of planar 2-dof parallel manipulator with actuation redundancy. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, 2006, 171–176

  7. Wang J, Gosselin C M. Kinematic analysis and design of kinematically redundant parallel mechanisms. Journal of Mechanical Design, 2004, 126(1):109–118

    Article  Google Scholar 

  8. Kock S. Parallelroboter mit antriebsredundanz. Dissertation for the Doctoral Degree. Institute of Control Engineering, TU Brunswick, Germany, 2001

    Google Scholar 

  9. Müller A. Internal preload control of redundantly actuated parallel manipulators-Its application to backlash avoiding control. In: Proceedings of IEEE Transactions on Robotics and Automation, 2005, 21(4):668–677

    Google Scholar 

  10. Ebrahimi I, Carretero J A, Boudreau R. 3-PRRR redundant planar parallel manipulator: Inverse displacement, workspace and singularity analyses. Mechanism and Machine Theory, 2007, 42(8):1007–1016

    Article  MathSciNet  MATH  Google Scholar 

  11. Cha S H, Lasky T A, Velinsky S A. Singularity avoidance for the 3-RRR mechanism using kinematic redundancy. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, 2007, 1195–1200

  12. Kotlarski J, Abdellatif H, Heimann B. On singularity avoidance and workspace enlargement of planar parallel manipulators using kinematic redundancy. In: Proceedings of the 13th IASTED International Conference on Robotics and Applications, 2007, 451–456

  13. Kotlarski J, Abdellatif H, Heimann B. Improving the pose accuracy of a planar 3RRR parallel manipulator using kinematic redundancy and optimized switching patterns. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, USA, 2008, 3863–3868

  14. Kotlarski J, Do Thanh T, Abdellatif H, Heimann B. Singularity avoidance of a kinematically redundant parallel robot by a constrained optimization of the actuation forces. In: Proceedings of the 17th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control, Tokyo, Japan, 2008, 435–442

  15. Kotlarski J, Do Thanh T, Heimann B, Ortmaier T. Optimization strategies for additional actuators of kinematically redundant parallel kinematic machines. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, USA, 2010, 656–661

  16. Corbel D, Company O, Pierrot F. From a 3-DOF parallel redundant ARCHI robot to an auto-calibrated ARCHI robot. In: Proceedings the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, USA, 2007, 847–854

  17. Arakelian V, Briot S, Glazunov V. Increase of singularity-free zones in the workspace of parallel manipulators using mechanisms of variable structure. Mechanism and Machine Theory, 2008, 43(9):1129–1140

    Article  MATH  Google Scholar 

  18. Jin Y, Cheng I M, Yang G L. Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. In: Proceedings of IEEE Transactions on Robotics, 2006, 22(3):545–551

    Article  Google Scholar 

  19. Jin Y, Chen I M, Yang G L. Kinematic design of a family of 6-DOF partially decoupled parallel manipulators. Mechanism and Machine Theory, 2009, 44(5):912–922

    Article  MATH  Google Scholar 

  20. Merlet J P. Singular configurations of parallel manipulators and grassmann geometry. The International Journal of Robotics Research, 1989, 8(5):45–56

    Article  Google Scholar 

  21. Bier C C. Geometrische und physikalische analyse von singularitäten bei parallelstrukturen. Dissertation for the Doctoral Degree. Institute of Machine Tools and Production Technology, TU Brunswick, Germany, 2006

    Google Scholar 

  22. Daniali H R M, Zsombor-Murray P J, Angeles J. Singularity analysis of a general class of planar parallel manipulators. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, 1995, 2:1547–1552

    Google Scholar 

  23. Bonev I A, Gosselin C M. Singularity loci of planar parallel manipulators with revolute joints. 2nd Workshop on Computational Kinematics, 2002, 291–299

  24. Li H, Gosselin C M, Richard M J. Determination of the maximal singularity-free zones in the six-dimensional workspace of the general Gough-Stewart platform. Mechanism and Machine Theory, 2007, 42(4):497–511

    Article  MathSciNet  MATH  Google Scholar 

  25. Hunt K H. Kinematic Geometry of Mechanisms. Clarendon Press, 1978

  26. Yang G L, Chen W, Chen I M. A geometrical method for the singularity analysis of 3-RRR planar parallel robots with different actuation schemes. In: Proceedings of the 2002 IEEE International Conference on Intelligent Robots and Systems, 2002, 3:2055–2060

    Google Scholar 

  27. Gosselin CM, Angeles J. The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator. Journal of Mechanisms, Transmissions, and Automation in Design, 1988, 110(1):35–41

    Article  Google Scholar 

  28. Kotlarski J, Abdellatif H, Ortmaier T, Heimann B. Enlarging the useable workspace of planar parallel robots using mechanisms of variable geometry. In: Proceedings of the ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, London, United Kingdom, 2009, 63–72

  29. Zein M, Wenger P, Chablat D. Singular curves and cusp points in the joint space of 3-RPR parallel manipulators. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006, 777–782

  30. Gough V E, Whitehall S G. Universal tyre test machine. In: Proceedings of the 9th FISITA-International Automobile Technical Congress, 1962, 117–137

  31. Stewart D. A platform with six degrees of freedom. In: Proceedings of the Institution of Mechanical Engineers, 1965, 180(1):371–386

    Article  Google Scholar 

  32. Grendel H. A platform with six degrees of freedom. Dissertation for the Doctoral Degree. Institute of Production Engineering and Machine Tools, Leibniz Universität Hannover, Hanover, Germany, 2004

    Google Scholar 

  33. Last P, Budde C, Hesselbach J. Self-calibration of the HEXAparallel structure. In: Proceedings of the 2005 IEEE Conference on Automation Science and Engineering, Edmonton, Canada, 2005, 393-398

  34. Bonev I A, Gosselin C M. Geometric algorithms for the computation of the constant-orientation workspace and singularity surfaces of a special 6-RUS parallel manipulator. In: Proceedings of the ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada, 2002, 505–514

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kotlarski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotlarski, J., Heimann, B. & Ortmaier, T. Influence of kinematic redundancy on the singularity-free workspace of parallel kinematic machines. Front. Mech. Eng. 7, 120–134 (2012). https://doi.org/10.1007/s11465-012-0321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-012-0321-8

Keywords

Navigation