Skip to main content
Log in

A new definition of geometric multiplicity of eigenvalues of tensors and some results based on it

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We give a new definition of geometric multiplicity of eigenvalues of tensors, and based on this, we study the geometric and algebraic multiplicity of irreducible tensors’ eigenvalues. We get the result that the eigenvalues with modulus have the same geometric multiplicity. We also prove that two-dimensional nonnegative tensors’ geometric multiplicity of eigenvalues is equal to algebraic multiplicity of eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulò S R, Pelillo M. A generalization of the Motzkin-Straus theorem to hypergraphs. Optim Lett, 2009, 3: 287–295

    Article  MATH  MathSciNet  Google Scholar 

  2. Bulò S R, Pelillo M. New bounds on the clique number of graphs based on spectral hypergraph theory. In: Stützle T, ed. Learning and Intelligent Optimization. Berlin: Springer-Verlag, 2009, 45–48

    Chapter  Google Scholar 

  3. Chang K C. A nonlinear Krein Rutman theorem. J Syst Sci Complex, 2009, 22: 542–554

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang K C, Pearson K, Zhang T. Perron Frobenius Theorem for non-negative tensors. Commun Math Sci, 2008, 6: 507–520

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416–422

    Article  MATH  MathSciNet  Google Scholar 

  6. Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32: 806–819

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang K C, Qi L, Zhang T. A survey on the spectral theory of nonnegative tensors. Numer Linear Algebra Appl, 2013, 20: 891–912

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang K C, Zhang T. Multiplicity of singular values for tensors. Commun Math Sci, 2009, 7: 611–625

    Article  MATH  MathSciNet  Google Scholar 

  9. Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438: 738–749

    Article  MATH  MathSciNet  Google Scholar 

  10. Hu S, Huang Z H, Qi L. Strictly nonnegative tensors and nonnegative tensor partition. Sci China Math, 2014, 57: 181–195

    Article  MATH  MathSciNet  Google Scholar 

  11. Lim L H. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 1: 129–132

    Google Scholar 

  12. Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a non-negative tensor. SIAM J Matrix Anal Appl, 2009, 31: 1090–1099

    Article  MathSciNet  Google Scholar 

  13. Pearson K. Essentially positive tensors. Int J Algebra, 2010, 4: 421–427

    MATH  MathSciNet  Google Scholar 

  14. Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

    Article  MATH  MathSciNet  Google Scholar 

  15. Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front Math China, 2007, 2: 501–526

    Article  MATH  MathSciNet  Google Scholar 

  16. Shao J. A general product of tensors with applications. Linear Algebra and Its Applications, 2013, 439: 2350–2366

    Article  MATH  MathSciNet  Google Scholar 

  17. Varga R. Matrix Iterative Analysis. Berlin: Springer-Verlag, 2000

    Book  MATH  Google Scholar 

  18. Yang Q, Yang Y. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236–1250

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang Y, Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517–2530

    Article  MATH  MathSciNet  Google Scholar 

  20. Yang Y, Yang Q. Geometric simplicity of the spectral radius of nonnegative irreducible tensors. Front Math China, 2013, 8(1): 129–140

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, Q. & Yang, Y. A new definition of geometric multiplicity of eigenvalues of tensors and some results based on it. Front. Math. China 10, 1123–1146 (2015). https://doi.org/10.1007/s11464-015-0412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-015-0412-z

Keywords

MSC

Navigation