Skip to main content
Log in

Nondegeneracy of eigenvectors and singular vector tuples of tensors

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this article, nondegeneracy of singular vector tuples, Z-eigenvectors and eigenvectors of tensors is studied, which have found many applications in diverse areas. The main results are: (i) each (Z-)eigenvector/singular vector tuple of a generic tensor is nondegenerate, and (ii) each nonzero Z-eigenvector/singular vector tuple of an orthogonally decomposable tensor is nondegenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas D P. Nonlinear Programming, 2nd ed. Belmont: Athena Scientific, 1999

    MATH  Google Scholar 

  2. Bott R, Tu L W. Differential Forms in Algebraic Topology. New York: Springer, 1982

    Book  MATH  Google Scholar 

  3. Cartwright D, Sturmfels B. The number of eigenvalues of a tensor. Linear Algebra Appl, 2013, 438: 942–952

    Article  MathSciNet  MATH  Google Scholar 

  4. Comon P, Jutten C. Handbook of Blind Source Separation. Oxford: Academic Press, 2010

    Google Scholar 

  5. do Carmo M P. Riemannian Geometry. Berlin: Springer, 1992

    Book  MATH  Google Scholar 

  6. Edelman A, Arias T, Smith S T. The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl, 1998, 20: 303–353

    Article  MathSciNet  MATH  Google Scholar 

  7. Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume 1 and Volume 2. New York: Springer-Verlag, 2003

    MATH  Google Scholar 

  8. Fan J, Nie J, Zhou A. Tensor eigenvalue complementarity problems. Math Program, 2018, 170: 507–539

    Article  MathSciNet  MATH  Google Scholar 

  9. Franc A. Étude Algébrique des Multitableaux: Apports de l’Algébre Tensorielle. PhD Thesis. Montpellier: Université de Montpellier II, 1992

    Google Scholar 

  10. Gelfand I M, Kapranov M M, Zelevinsky A V. Discriminants, Resultants and Multidimensional Determinants. Boston: Birkhäuser, 1994

    Book  MATH  Google Scholar 

  11. Hackbusch W. Tensor Spaces and Numerical Tensor Calculus. Berlin: Springer, 2012

    Book  MATH  Google Scholar 

  12. Hartshorne R. Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. New York: Springer, 1977

    Google Scholar 

  13. Horn R A, Johnson C R. Matrix Analysis. New York: Cambridge University Press, 1985

    Book  MATH  Google Scholar 

  14. Hu S. Symmetry of eigenvalues of Sylvester matrices and tensors. Sci China Math, 2020, 63: 845–872

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu S, Huang Z H, Ling C, et al. On determinants and eigenvalue theory of tensors. J Symbolic Comput, 2013, 50: 508–531

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu S, Li G. Convergence rate analysis for the higher order power method in best rank one approximations of tensors. Numer Math, 2018, 140: 993–1031

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu S, Qi L. The E-eigenvectors of tensors. Linear Multilinear Algebra, 2014, 62: 1388–1402

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu S, Ye K. Multiplicities of tensor eigenvalues. Commun Math Sci, 2016, 14: 1049–1071

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu S, Ye K. Linear convergence of an alternating polar decomposition method for low rank orthogonal tensor approximations. arXiv:1912.04085, 2019

  20. Kolda T G. Orthogonal tensor decompositions. SIAM J Matrix Anal Appl, 2001, 23: 243–255

    Article  MathSciNet  MATH  Google Scholar 

  21. Landsberg J M. Tensors: Geometry and Applications. Providence: Amer Math Soc, 2012

    MATH  Google Scholar 

  22. Li G, Pong T K. Calculus of the exponent of Kurdyka-Łojasiewicz inequality and its applications to linear convergence of first-order methods. Found Comput Math, 2018, 18: 1199–1232

    Article  MathSciNet  MATH  Google Scholar 

  23. Li G, Qi L, Yu G. Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application. Linear Algebra Appl, 2013, 438: 813–833

    Article  MathSciNet  MATH  Google Scholar 

  24. Lim L H. Singular values and eigenvalues of tensors: A variational approach. In: Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. New York: IEEE, 2005, 129–132

    Google Scholar 

  25. Ortega J M, Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables. Berlin: Springer, 1970

    MATH  Google Scholar 

  26. Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

    Article  MathSciNet  MATH  Google Scholar 

  27. Robeva E. Orthogonal decomposition of symmetric tensors. SIAM J Matrix Anal Appl, 2016, 37: 86–102

    Article  MathSciNet  Google Scholar 

  28. Robeva E, Seigal A. Singular vectors of orthogonally decomposable tensors. Linear Multilinear Algebra, 2017, 65: 2457–2471

    Article  MathSciNet  MATH  Google Scholar 

  29. Sommese A J, Wampler II C W. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. Hackensack: World Scientific, 2005

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11771328), Young Elite Scientists Sponsorship Program by Tianjin and the Natural Science Foundation of Zhejiang Province of China (Grant No. LD19A010002). The author is grateful to Professor Donghui Li at South China Normal University for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S. Nondegeneracy of eigenvectors and singular vector tuples of tensors. Sci. China Math. 65, 2483–2492 (2022). https://doi.org/10.1007/s11425-020-1863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1863-5

Keywords

MSC(2020)

Navigation