Skip to main content
Log in

Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays

  • Survey Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

The aims of this paper are (i) to present a survey of recent advances in the analysis of superconvergence of collocation solutions for linear Volterra-type functional integral and integro-differential equations with delay functions θ(t) vanishing at the initial point of the interval of integration (with ia(t) = qt (0 < q < 1, t ⩾ 0) being an important special case), and (ii) to point, by means of a list of open problems, to areas in the numerical analysis of such Volterra functional equations where more research needs to be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali I, Brunner H, Tang T. A spectral method for pantograph-type delay differential equations and its convergence analysis. J Comput Math (in press)

  2. Ali I, Brunner H, Tang T. Spectral methods for pantograph differential and integral equations with multiple delays (to appear)

  3. Andreoli G. Sulle equazioni integrali. Rend Circ Mat Palermo, 1914, 37: 76–112

    Article  Google Scholar 

  4. Bellen A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J Numer Anal, 2002, 22: 529–536

    Article  MATH  MathSciNet  Google Scholar 

  5. Bellen A, Brunner H, Maset S, Torelli L. Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays. BIT, 2006, 46: 229–247

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellen A, Guglielmi N, Torelli L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl Numer Math, 1997, 24: 275–293

    MathSciNet  Google Scholar 

  7. Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations. Oxford: Oxford University Press, 2003

    Book  MATH  Google Scholar 

  8. Brunner H. On the discretization of differential and Volterra integral equations with variable delay. BIT, 1997, 37: 1–12

    Article  MATH  MathSciNet  Google Scholar 

  9. Brunner H. The numerical analysis of functional integral and integro-differential equations of Volterra type. Acta Numerica, 2004, 55–145

  10. Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics, Vol 15. Cambridge: Cambridge University Press, 2004

    Google Scholar 

  11. Brunner H. Recent advances in the numerical analysis of Volterra functional differential equations with variable delays. J Comput Appl Math, 2008 (in press)

  12. Brunner H. On the regularity of solutions for Volterra functional equations with weakly singular kernels and vanishing delays (to appear)

  13. Brunner H. Collocation methods for pantograph-type Volterra functional equations with multiple delays. Comput Methods Appl Math, 2008 (in press)

  14. Brunner H, Hu Q -Y. Superconvergence of iterated collocation solutions for Volterra integral equations with variable delays. SIAM J Numer Anal, 2005, 43: 1934–1949

    Article  MATH  MathSciNet  Google Scholar 

  15. Brunner H, Hu Q -Y. Optimal superconvergence results for delay integro-differential equations of pantograph type. SIAM J Numer Anal, 2007, 45: 986–1004

    Article  MATH  MathSciNet  Google Scholar 

  16. Brunner H, Maset S. Time transformations for delay differential equations. Discrete Contin Dyn Syst (in press)

  17. Brunner H, Maset S. Time transformations for state-dependent delay differential equations. Preprint, 2008

  18. Brunner H, Pedas A, Vainikko G. The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math Comp, 1999, 68: 1079–1095

    Article  MATH  MathSciNet  Google Scholar 

  19. Brunner H, Pedas A, Vainikko G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J Numer Anal, 2001, 39: 957–982

    Article  MATH  MathSciNet  Google Scholar 

  20. Buhmann M D, Iserles A. Numerical analysis of functional equations with a variable delay. In: Griffiths D F, Watson G A, eds. Numerical Analysis (Dundee 1991). Pitman Res Notes Math Ser, 260. Harlow: Longman Scientific & Technical, 1992, 17–33

    Google Scholar 

  21. Buhmann M D, Iserles A. On the dynamics of a discretized neutral equation. IMA J Numer Anal, 1992, 12: 339–363

    Article  MATH  MathSciNet  Google Scholar 

  22. Buhmann M D, Iserles A. Stability of the discretized pantograph differential equation. Math Comp, 1993, 60: 575–589

    Article  MATH  MathSciNet  Google Scholar 

  23. Buhmann M, Iserles A, Nørsett S P. Runge-Kutta methods for neutral differential equations. In: Agarwal R P, ed. Contributions in Numerical Mathematics (Singapore 1993). River Edge: World Scientific Publ, 1993, 85–98

    Google Scholar 

  24. Carvalho L A V, Cooke K L. Collapsible backward continuation and numerical approximations in a functional differential equation. J Differential Equations, 1998, 143: 96–109

    Article  MATH  MathSciNet  Google Scholar 

  25. Li G Chambers. Some properties of the functional equation φ(x) = ƒ(x)+ λx0 g(x, y, φ(y))dy. Internat J Math Math Sci, 1990, 14: 27–44

    Google Scholar 

  26. Denisov A M, Korovin S V. On Volterra’s integral equation of the first kind. Moscow Univ Comput Math Cybernet, 1992, 3: 19–24

    MathSciNet  Google Scholar 

  27. Denisov A M, Lorenzi A. On a special Volterra integral equation of the first kind. Boll Un Mat Ital B (7), 1995, 9: 443–457

    MATH  MathSciNet  Google Scholar 

  28. Denisov A M, Lorenzi A. Existence results and regularization techniques for severely ill-posed integrofunctional equations. Boll Un Mat Ital B (7), 1997, 11: 713–732

    MATH  MathSciNet  Google Scholar 

  29. Feldstein A, Iserles A, Levin D. Embedding of delay equations into an infinitedimensional ODE system. J Differential Equations, 1995, 117: 127–150

    Article  MATH  MathSciNet  Google Scholar 

  30. Feldstein A, Liu Y K. On neutral functional-differential equations with variable time delays. Math Proc Cambridge Phil Soc, 1998, 124: 371–384

    Article  MATH  MathSciNet  Google Scholar 

  31. Fox L, Mayers D F, Ockendon J R, Tayler A B. On a functional differential equation. J Inst Math Appl, 1971, 8: 271–307

    Article  MATH  MathSciNet  Google Scholar 

  32. Frederickson P O. Dirichlet solutions for certain functional differential equations. In: Urabe M, ed. Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto 1971). Lecture Notes in Math, Vol 243. Berlin-Heidelberg: Springer-Verlag, 1971, 249–251

    Chapter  Google Scholar 

  33. Frederickson P O. Global solutions to certain nonlinear functional differential equations. J Math Anal Appl, 1971, 33: 355–358

    Article  MATH  MathSciNet  Google Scholar 

  34. Gan S Q. Exact and discretized dissipativity of the pantograph equation. J Comput Math, 2007, 25: 81–88

    MATH  MathSciNet  Google Scholar 

  35. Guglielmi N. Short proofs and a counterexample for analytical and numerical stability of delay equations with infinite memory. IMA J Numer Anal, 2006, 26: 60–77

    Article  MATH  MathSciNet  Google Scholar 

  36. Guglielmi N, Zennaro M. Stability of one-leg θ-methods for the variable coefficient pantograph equation on the quasi-geometric mesh. IMA J Numer Anal, 2003, 23: 421–438

    Article  MATH  MathSciNet  Google Scholar 

  37. Huang C M, Vandewalle S. Discretized stability and error growth of the nonautonomous pantograph equation. SIAM J Numer Anal, 2005, 42: 2020–2042

    Article  MATH  MathSciNet  Google Scholar 

  38. Iserles A. On the generalized pantograph functional differential equation. Europ J Appl Math, 1993, 4: 1–38

    MATH  MathSciNet  Google Scholar 

  39. Iserles A. Numerical analysis of delay differential equations with variable delays. Ann Numer Math, 1994, 1: 133–152

    MATH  MathSciNet  Google Scholar 

  40. Iserles A. On nonlinear delay-differential equations. Trans Amer Math Soc, 1994, 344: 441–477

    Article  MATH  MathSciNet  Google Scholar 

  41. Iserles A. Beyond the classical theory of computational ordinary differential equations. In: Duff I S, Watson G A, eds. The State of the Art in Numerical Analysis (York 1996). Oxford: Clarendon Press, 1997, 171–192

    Google Scholar 

  42. Iserles A, Liu Y K. On pantograph integro-differential equations. J Integral Equations Appl, 1994, 6: 213–237

    Article  MATH  MathSciNet  Google Scholar 

  43. Iserles A, Terjéki J. Stability and asymptotic stability of functional-differential equations. J London Math Soc (2), 1995, 51: 559–572

    MATH  MathSciNet  Google Scholar 

  44. Ishiwata E. On the attainable order of collocation methods for the neutral functionaldifferential equations with proportional delays. Computing, 2000, 64: 207–222

    Article  MATH  MathSciNet  Google Scholar 

  45. Ishiwata E, Muroya Y. Rational approximation method for delay differential equations with proportional delay. Appl Math Comput, 2007, 187: 741–747

    Article  MATH  MathSciNet  Google Scholar 

  46. Jackiewicz Z. Asymptotic stability analysis of θ-methods for functional differential equations. Numer Math, 1984, 43: 389–396

    Article  MATH  MathSciNet  Google Scholar 

  47. Kato T, McLeod J B. The functional-differential equation y′(x) = ayx) + by(x). Bull Amer Math Soc, 1971, 77: 891–937

    Article  MATH  MathSciNet  Google Scholar 

  48. Koto T. Stability of Runge-Kutta methods for the generalized pantograph equation. Numer Math, 1999, 84: 233–247

    Article  MATH  MathSciNet  Google Scholar 

  49. Lalesco T. Sur l’équation de Volterra. J de Math (6), 1908, 4: 309–317

    Google Scholar 

  50. Lalesco T. Sur une équation intégrale du type Volterra. C R Acad Sci Paris, 1911, 152: 579–580

    MATH  Google Scholar 

  51. Li D, Liu M Z. Asymptotic stability of numerical solution of pantograph delay differential equations. J Harbin Inst Tech, 1999, 31: 57–59 (in Chinese)

    MATH  MathSciNet  Google Scholar 

  52. Li D, Liu M Z. The properties of exact solution of multi-pantograph delay differential equation. J Harbin Inst Tech, 2000, 32: 1–3 (in Chinese)

    MathSciNet  Google Scholar 

  53. Liang J, Liu M Z. Stability of numerical solutions to pantograph delay systems. J Harbin Inst Tech, 1996, 28: 21–26 (in Chinese)

    MATH  MathSciNet  Google Scholar 

  54. Liang J, Liu M Z. Numerical stability of θ-methods for pantograph delay differential equations. J Numer Methods Comput Appl, 1996, 12: 271–278 (in Chinese)

    Article  MathSciNet  Google Scholar 

  55. Liang J, Qiu S, Liu M Z. The stability of θ-methods for pantograph delay differential equations. Numer Math J Chinese Univ (Engl Ser), 1996, 5: 80–85

    MATH  MathSciNet  Google Scholar 

  56. Liu M Z, Li D. Properties of analytic solution and numerical solution of multipantograph equation. Appl Math Comput, 2004, 155: 853–871

    Article  MATH  MathSciNet  Google Scholar 

  57. Liu M Z, Wang Z, Hu G. Asymptotic stability of numerical methods with constant stepsize for pantograph equations. BIT, 2005, 45: 743–759

    Article  MATH  MathSciNet  Google Scholar 

  58. Liu M Z, Yang Z W, Xu Y. The stability of modified Runge-Kutta methods for the pantograph equation. Math Comp, 2006, 75: 1201–1215

    Article  MATH  MathSciNet  Google Scholar 

  59. Liu Y K. Stability analysis of θ-methods for neutral functional-differential equations. Numer Math, 1995, 70: 473–485

    Article  MATH  MathSciNet  Google Scholar 

  60. Liu Y K. The linear q-difference equation y(x) = ay(qx) + ƒ(x). Appl Math Lett, 1995, 8: 15–18

    Article  MATH  Google Scholar 

  61. Liu Y K. On θ-methods for delay differential equations with infinite lag. J Comput Appl Math, 1996, 71: 177–190

    Article  MATH  MathSciNet  Google Scholar 

  62. Liu Y K. Asymptotic behaviour of functional-differential equations with proportional time delays. Europ J Appl Math, 1996, 7: 11–30

    MATH  Google Scholar 

  63. Liu Y K. Numerical investigation of the pantograph equation. Appl Numer Math, 1997, 24: 309–317

    Article  MATH  MathSciNet  Google Scholar 

  64. Ma S F, Yang Z W, Liu M Z. H α-stability of modified Runge-Kutta methods for nonlinear neutral pantograph equations. J Math Anal Appl, 2007, 335: 1128–1142

    Article  MATH  MathSciNet  Google Scholar 

  65. Morris G R, Feldstein A, Bowen E W. The Phragmén-Lindelöf principle and a class of functional differential equations. In: Weiss L, ed. Ordinary Differential Equations (Washington, DC, 1971). New York: Academic Press, 1972, 513–540

    Google Scholar 

  66. Mureşan V. On a class of Volterra integral equations with deviating argument. Studia Univ Babeş-Bolyai Math, 1999, XLIV: 47–54

    Google Scholar 

  67. Muroya Y, Ishiwata E, Brunner H. On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math, 2003, 152: 347–366

    Article  MATH  MathSciNet  Google Scholar 

  68. Ockendon J R, Tayler A B. The dynamics of a current collection system for an electric locomotive. Proc Roy Soc London Ser A, 1971, 322: 447–468

    Article  Google Scholar 

  69. Pukhnacheva T P. A functional equation with contracting argument. Siberian Math J, 1990, 31: 365–367

    Article  MATH  MathSciNet  Google Scholar 

  70. Qiu L, Mitsui T, Kuang J X. The numerical stability of the θ-method for delay differential equations with many variable delays. J Comput Math, 1999, 17: 523–532

    MATH  MathSciNet  Google Scholar 

  71. Si J G, Cheng S S. Analytic solutions of a functional differential equation with proportional delays. Bull Korean Math Soc, 2002, 39: 225–236

    MATH  MathSciNet  Google Scholar 

  72. Takama N, Muroya Y, Ishiwata E. On the attainable order of collocation methods for the delay differential equations with proportional delay. BIT, 2000, 40: 374–394

    Article  MATH  MathSciNet  Google Scholar 

  73. Terjéki J. Representation of the solutions to linear pantograph equations. Acta Sci Math (Szeged), 1995, 60: 705–713

    MATH  MathSciNet  Google Scholar 

  74. Volterra V. Sopra alcune questioni di inversione di integrali definite. Ann Mat Pura Appl, 1897, 25: 139–178

    Article  Google Scholar 

  75. Volterra V. Leçcons sur les équations intégrales. Paris: Gauthier-Villars, 1913 (VFIEs with proportional delays as limits of integration are treated on pp. 92–101)

    Google Scholar 

  76. Xu Y, Zhao J, Liu M. H-stability of Runge-Kutta methods with variable stepsize for systems of pantograph equations. J Comput Math, 2004, 22: 727–734

    MATH  MathSciNet  Google Scholar 

  77. Yu Y, Li S. Stability analysis of Runge-Kutta methods for nonlinear systems of pantograph equations. J Comput Math, 2005, 23: 351–356

    MATH  MathSciNet  Google Scholar 

  78. Zhang C, Sun G. The discrete dynamics of nonlinear infinite-delay differential equations. Appl Math Lett, 2002, 15: 521–526

    Article  MATH  MathSciNet  Google Scholar 

  79. Zhang C, Sun G. Boundedness and asymptotic stability of multistep methods for pantograph equations. J Comput Math, 2004, 22: 447–456

    MATH  MathSciNet  Google Scholar 

  80. Zhao J J, Cao W R, Liu M Z. Asymptotic stability of Runge-Kutta methods for the pantograph equations. J Comput Math, 2004, 22: 523–534

    MATH  MathSciNet  Google Scholar 

  81. Zhao J J, Xu Y, Qiao Y. The attainable order of the collocation method for double-pantograph delay differential equation. Numer Math J Chinese Univ, 2005, 27: 297–308 (in Chinese)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Brunner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, H. Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays. Front. Math. China 4, 3–22 (2009). https://doi.org/10.1007/s11464-009-0001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-009-0001-0

Keywords

MSC

Navigation