Skip to main content
Log in

Characteristics of the temperature coefficient, Q 10, for the respiration of non-photosynthetic organs and soils of forest ecosystems

  • Review
  • Published:
Frontiers of Forestry in China

Abstract

The temperature coefficient, Q 10 (fractional change in rate with a 10°C increase in temperature) describes the temperature sensitivity of soils, roots, and stems, as well as their possible performance in global warming processes. It is also a necessary parameter for the estimation of total CO2 efflux from each element. A number of studies have focused on Q 10 values to date; however, their conclusions are not universal and do not always agree. A review of these reported Q 10 values therefore becomes necessary and important for a global understanding of the temperature sensitivity of different forest types and elements. The aims of our present paper are, first, to find the frequency distribution pattern of soils, roots, and stems (branches) and compare their temperature sensitivity; then, to find the Q 10 differences between conifer and deciduous tree species and the effect of methodology on Q 10 values; finally we want to give a perspective on future Q 10-related studies. We found that most Q 10 values of each element were concentrated in a relatively narrow range despite a total data distribution over quite a wide range. For soil respiration, the median Q 10 value was 2.74 and the center of the frequency distribution was between 2.0 and 2.5 with a percentage of 23%. Most of the data (>80%) were within the range from 1.0 to 4.0. The median Q 10 value for root respiration was 2.40 and the center of the frequency distribution was from 2.5 to 3.0 with a percentage of 33%. Most of the results (>80%) ranged from 1.0 to 3.0. For stem respiration, the median Q 10 value was 1.91 and the frequency distribution was concentrated between 1.5 and 2.0. Over 90% of the data ranged from 1.0 to 3.0. Obvious differences in Q 10 value were found between different elements, stem < root < soil including root < soil excluding root. The differences between woody organisms of stems, roots, and soils excluding roots were statistically significant (p<0.05), indicating that heterotrophic respiration from microorganism activity may be more sensitive to global warming. The duration of the period with leaves slightly affects the temperature sensitivity of woody organisms since the Q 10 values for root and stem of coniferous evergreen trees did not differ significantly from deciduous trees (p>0.10). CO2 analytical methods (soda lime absorption method, IRGA (Infra-read gas analysis), and chromatograph analysis) and root separation methods (excised root and trenched box) slightly affected the Q 10 values of soil and root respiration (p>0.10), but an in vitro measurement of stem respiration yielded a significantly higher Q 10 value than an in vivo method (p<0.05). In general, although the Q 10 values of non-photosynthetic organisms stayed within a relatively conservative range, considerable variation between and within elements were still detectable. Accordingly, attention should be paid to the quantitative estimation of total CO2 efflux by Q 10-related models. In future studies, the biochemical factors and the environmental and biological factors controlling respiration should be emphasized for precise estimation of total CO2 efflux. The difficulty is how to clarify the underlying mechanism for fluctuations of Q 10 values for one specific habitat and element (e.g. temperature acclimation or adaptation of Q 10 values) and then allow the Q 10 values to be more conservative for representation of temperature sensitivity in global warming processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthor J.-S., The McCree-de Wit-Penning de Vries-Thornley respiration paradigms, 30 years later, Ann. Bot., 2000, 86: 1–20

    Article  CAS  Google Scholar 

  • Atkin O.-K., Edwards E.-J., and Loveys B.-R., Response of root respiration to changes in temperature and its relevance to global warming, New Phytol., 2000, 147: 141–154

    Article  CAS  Google Scholar 

  • Bekku Y.-S., Nakatsubo T., Kumec A., Adachi M. and Koizumi H., Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils, Appl. Soil Ecol., 2003, 22: 205–210

    Article  Google Scholar 

  • Benecke U., Tree respiration in steepland stands of Nothofagus truncata and Pinus radiata, Nelson, New Zealand, In: Turner H. and Tranquillini W. eds. Establishment and tending of subalpine forests, research and management, Swiss Federal Institute of Forestry Research, Report, 1985, 270: 61–70

    Google Scholar 

  • Boone R.-D., Nadelhoffer K.-J., Canary J.-D. and Kaye J.-P., Roots exert a strong influence on the temperature sensitivity of soil respiration, Nature, 1998, 396: 570–572

    Article  CAS  Google Scholar 

  • Borken W., Xu Y.-J., Brumme R. and Lamersdorf N., A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: drought and rewetting effects, Soil Sci. Soc. Am. J., 1999, 63: 1,848–1,855

    Article  CAS  Google Scholar 

  • Borken W., Xu Y.-J., Davidson E. and Beese F., Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Chang. Biol., 2002, 8: 1,205–1,216

    Article  Google Scholar 

  • Bosc A., Grandcourt A.-D. and Loustau D., Variability of stem and branch maintenance respiration in a Pinus pinaster tree, Tree Physiol., 2003, 23: 227–236

    PubMed  Google Scholar 

  • Bostad P.-V., Reich P. and Lee T., Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra, Tree Physiol., 2003, 23: 969–976

    PubMed  Google Scholar 

  • Buchmann N., Biotic and abiotic factors controlling soil respiration rates in Picea abies stands, Soil Biol. Biochem., 2000, 32: 1,625–1,635

    Article  CAS  Google Scholar 

  • Burton A.-J. and Pregitzer K.-S., Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine, Tree Physiol., 2003, 23: 273–280

    PubMed  Google Scholar 

  • Burton A.-J., Pregitzer K.-S., Ruess R.-W., Hendrick R.-L. and Allen M.-F., Root respiration in North American forests, effects of nitrogen concentration and temperature across biomes, Oecologia, 2002, 131: 559–568

    Article  Google Scholar 

  • Cannell M.-G.-R. and Thornley J.-H.-M., Modelling the components of plant respiration, some guiding principles, Ann. Bot., 2000, 85: 45–54

    Article  CAS  Google Scholar 

  • Carey E.-V., Callaway R.-M. and DeLucia E.-H., Stem respiration of ponderosa pines grown in contrasting climates, implications for global climate change, Oecologia, 1997, 111: 19–25

    Article  Google Scholar 

  • Carey, E.-V., DeLucia E.-H. and Ball J.-T., Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO2, Tree Physiol., 1996, 16: 125–130

    PubMed  Google Scholar 

  • Chapman S.-B., Some interrelationships between soil and root respiration in lowland calluna heathland in southern England, J. of Ecol., 1979, 67: 1–20

    Google Scholar 

  • Chen H.-H., Ding S.-T., Cai X.-R., Hong W. and Zhang Z.-Y., Applied Statistics in Forestry, Dalian: Publishing House of Dalian Maritime University, 1992: 19–54 [陈建豪, 丁思统, 蔡贤如, 洪伟, 张忠义, 林业应用数理统计, 大连: 大连海事大学出版社, 1992: 19–54]

    Google Scholar 

  • Clinton B.-D. and Vose J.-M., Fine root respiration in mature eastern white pine (Pinus strobus) in situ, the importance of CO2 in controlled environments, Tree Physiol, 1999, 19: 475–479

    PubMed  Google Scholar 

  • Covey-Crump E.-M., Attwood R.-G. and Atkin O.-K., Regulation of root respiration in two species of Plantago that differ in relative growth rate, the effect of short-and long-term changes in temperature, Plant, Cell & Environment, 2002, 25: 1,501–1,513

    Google Scholar 

  • Cropper W.-P. Jr. and Gholz H.-L., In situ needle and fine root respiration in mature slash pine (Pinus elliottii) trees, Can. J. For. Res., 1991, 21: 1,589–1,595

    Google Scholar 

  • Damesin C., Ceschia E., Le Goff N., Ottorini J.-M. and Dufrêne E., Stem and branch respiration of beech, from tree measurements to estimations at the stand level, New Phytol., 2002, 153: 159–172

    Article  Google Scholar 

  • Damesin C., Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica, from the seasonal pattern to an annual balance, New Phytol., 2003, 158: 465–475

    Article  Google Scholar 

  • Davidson E.-A., Belk E. and Boone R.-D., Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Global Chang. Biol., 1998, 4: 217–227

    Article  Google Scholar 

  • Edwards N.-T., and Hanson P.-J., Stem respiration in a closed-canopy upland, Tree Physiol., 1996, 16: 433–439

    PubMed  Google Scholar 

  • Edwards N.-T., Tschaplinski T.-J. and Norby R.-J., Stem respiration increases in CO2-enriched sweetgum trees, New Phytol., 2002, 155: 239–248

    Article  Google Scholar 

  • Ekblad A. and Högberg P., Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration, Oecologia, 2001, 127: 305–308

    Article  Google Scholar 

  • Fang C. and Moncrieff J.-B., The dependence of soil CO2 efflux on temperature, Soil Biol. Biochem., 2001, 33: 155–165

    Article  CAS  Google Scholar 

  • Gifford R.-M., Implications of the globally increasing atmospheric CO2 concentration and temperature for the Australian terrestrial carbon budget, integration using a simple model, Aust. J. Bot., 1992, 40: 527–543

    Article  CAS  Google Scholar 

  • Granier A., Ceschia E., Damesin C., Dufrêne E., Epron D., Gross P., Lebaube S., Le Dantec V., Le Goff N., Lemoine D., Lucot E., Ottorini J.-M., Pontailler J.-Y., and Saugier B., The carbon balance of a young Beech forest, Funct. Ecol., 2000, 14: 312–325

    Article  Google Scholar 

  • Grossman Y.-L. and Dejong T.-M., Carbohydrate requirements for dark respiration by peach vegetative organs, Tree Physiol., 1994, 14: 37–48

    CAS  PubMed  Google Scholar 

  • Gulledge J. and Schimel J.-P., Controls on soil carbon dioxide and methane fluxes in a variety of Taiga forest stands in interior Alaska, Ecosystems, 2000, 3: 269–282

    Article  Google Scholar 

  • Hanson P.-J., Edwards N.-T., Garten C.-T. and Andrews J.-A., Separating root and soil microbial contributions to soil respiration, a review of methods and observations, Biogeochemistry, 2000, 48: 115–146

    Article  CAS  Google Scholar 

  • Högberg M.-N. and Högberg P., Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil, New Phytol., 2002, 154: 791–795

    Article  Google Scholar 

  • Huang C.-C., Ge Y., Chang J., Lu R. and Xu Q.-S., Studies on the soil respiration of three woody plant communities in the east mid-subtropical zone, China, Acta Ecol. Sin., 1999, 19(3): 324–328 [黄承才, 葛滢, 常杰, 卢蓉, 徐青山, 中亚热带东部三种主要木本群落土壤呼吸的研究, 生态学报, 1999, 19(3): 324–328]

    Google Scholar 

  • Janssens I.-A. and Pilegaard K., Large seasonal changes in Q 10 of soil respiration in a beech forest, Global Chang. Biol., 2003, 9: 911–918

    Article  Google Scholar 

  • Jiang G.-M. and Huang Y.-X., A study on the measurement of CO2 emission from the soil of the simulated Quercus liaotungensis forest sampled from Beijing mountain areas, Acta Ecol. Sin., 1997, 17(5): 477–482 [蒋高明, 黄银哓, 北京山区辽东栎林土壤释放 CO2 的模拟实验研究, 生态学报, 1997, 17(5): 477–482]

    Google Scholar 

  • Kinerson R.-S., Relationships between plant surface area and respiration in loblolly pine, J. Appl. Ecol., 1975, 12: 965–971

    Google Scholar 

  • Kirschbaum M.-U.-F., The temperature dependency of soil organic matter decomposition and the effect of global warming on soil organic C storage, Soil Biol. Biochem., 1995, 27:753–760

    Article  CAS  Google Scholar 

  • Koizumi H., Kontturi M., Mariko S., Nakadai T., Bekku Y. and Mela T., Soil respiration in three soil types in agricultural ecosystems in Finland, Acta Agr. Scand., 1999, 49: 65–74

    Google Scholar 

  • Lavigne M.-B. and Ryan M.-G., Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites, Tree Physiol., 1997, 17: 543–551

    CAS  PubMed  Google Scholar 

  • Lavigne M.-B., Boutin R., Foster R.-J., Goodine G., Bernier P.-Y. and Robitaille G., Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems, Can. J. For. Res., 2003, 33: 1,744–1,753

    Article  CAS  Google Scholar 

  • Lavigne M.-B., Differences in stem respiration responses to temperature between balsam fir trees in thinned and unthinned stands, Tree Physiol., 1987, 3: 225–233

    PubMed  Google Scholar 

  • Lavigne M.-B., Franklin S.-E. and Hunt E.-R. Jr., Estimating stem maintenance respiration rates of dissimilar balsam fir stands, Tree Physiol., 1996, 16: 687–695

    PubMed  Google Scholar 

  • Law B.-E., Ryan M.-G. and Anthoni P.-M., Seasonal and annual respiration of a ponderosa pine ecosystem, Global Chang. Biol., 1999, 5: 169–182

    Article  Google Scholar 

  • Lawrence W.-T. and Oechel W.-C., Effects of soil temperature on the carbon exchange of taiga seedlings. I. Root respiration, Can. J. For. Res., 1983, 13: 840–849

    CAS  Google Scholar 

  • Levy P.-E. and Jarvis P.-G., Stem CO2 flux in two sahelian shrub species (Guiera senegalensis and Combretum micranthum), Funct. Ecol., 1998, 12: 107–116

    Article  Google Scholar 

  • Linder S. and Troeng E., The seasonal variation in stem and coarse root respiration of a 20-year-old Scots pine (Pinus sylvestris L.), Mitteilungen der Forstlichen Bundesversuchsanstalt Wien, 1981, 142: 125–139

    Google Scholar 

  • Liu S.-H., Fang J.-Y. and Makoto K., Soil respiration of mountainous temperate forests in Beijing, China, Acta Phytecol. Sin., 1998, 22(2): 119–126 [刘绍辉, 方精云, 清田信, 北京山地温带森林的土壤呼吸, 植物生态学报, 1998, 22(2): 119–126]

    Google Scholar 

  • Lloyd J. and Taylor J.-A., On the temperature dependence of soil respiration, Funct. Ecol., 1994, 8: 315–323

    Google Scholar 

  • Loveys B.-R., Atkinson L.-J., Sherlock D.-J., Roberts R.-L., Fitter A.-H. and Atkin O.-K., Thermal acclimation of leaf and root respiration, an investigation comparing inherently fast-and slow-growing plant species, Global Chang. Biol., 2003, 9: 895–910

    Article  Google Scholar 

  • Maier C.-A., Stem growth and respiration in loblolly pine plantations differing in soil resource availability, Tree Physiol., 2001, 21: 1,183–1,193

    CAS  Google Scholar 

  • Maier C.-A., Zamoch S.-J. and Dougherty P.-M., Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation, Tree Physiol., 1998, 18: 11–20

    PubMed  Google Scholar 

  • Matyssek R., Günthardt-Goerg M.-S., Maurer S. and Christ R., Tissue structure and respiration of stems of Betula pendula under contrasting ozone exposure and nutrition, Trees, 2002, 16: 375–385

    Article  CAS  Google Scholar 

  • McDowell N.-G., Marshall J.-D., Qi J. and Mattson K., Direct inhibition of maintenance respiration in western helock roots exposed to ambient soil carbon dioxide concentrations, Tree Physiol., 1999, 19: 599–605

    CAS  PubMed  Google Scholar 

  • Meir P. and Grace J., Scaling relationships for woody tissue respiration in two tropical rain forests, Plant, Cell Environ., 2002, 25: 963–973

    Article  Google Scholar 

  • Paembonan S.-A., Hagihara A. and Hozumi K., Long-term respiration in relation to growth and maintenance processes of the aboveground parts of a hinoki forest tree, Tree Physiol., 1992, 10: 101–110

    PubMed  Google Scholar 

  • Paembonan S.-A., Hagihari A. and Hozumi K., Long-term measurement of CO2 release from aboveground parts of a hinoki forest tree in relation to air temperature, Tree Physiol., 1991, 8: 399–405

    Google Scholar 

  • Pregitzer K.-S., Laskowski M.-J., Burton A.-J., Lessard C. and Zak D.-R., Variation in sugar maple root respiration with root diameter and soil depth, Tree Physiol., 1998, 18: 665–670

    PubMed  Google Scholar 

  • Pruyn M.-L., Gartner B.-L. and Harmon M.-E., Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest, Tree Physiol, 2002b, 22: 105–116

    PubMed  Google Scholar 

  • Pruyn M.-L., Gartner B.-L. and Harmon M.-E., Within-stem variation of respiration in Pseudotsuga menziesii (Douglas-fir) trees, New Phytol., 2002a, 154: 359–372

    Article  Google Scholar 

  • Pumpanen J., Ilvesniemi H., Peramaki M. and Hari P., Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest, comparison of two chamber techniques, Global Chang Biol., 2003, 9: 371–382

    Article  Google Scholar 

  • Raich J.-W. and Schlesinger W.-H., The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus, 1992, 44B: 81–99

    CAS  Google Scholar 

  • Rey A., Pegoraro E., Tedeschi V., De Parri I., Jarvis P.-G. and Valentini R., Annual variation in soil respiration and its components in a coppice oak forest in central Italy, Global Change, Biol., 2002, 8: 851–866

    Article  Google Scholar 

  • Ryan M.-G., Gower S.-T., Hubbard R.-M., Waring R.-H., Gholz H.-L., Cropper W.P. and Running S.W., Stem maintenance respiration of four conifers in contrasting climates, Oecologia, 1995, 101: 133–140

    Article  Google Scholar 

  • Ryan M.-G., Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii, Can. J. For. Res., 1990, 20: 48–57

    Google Scholar 

  • Ryan M.-G., Hubbard R.-M., Clark D.-L. and Sanford R.-L. Jr., Woody tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits, Oecologia, 1994a, 100: 213–220

    Article  Google Scholar 

  • Ryan M.-G., Hubbard R.-M., Pongracic S., Raison R.-J. and McMurtrie R.-E., Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status, Tree Physiol, 1996, 16: 333–343

    PubMed  Google Scholar 

  • Ryan M.-G., Linder S., Vose J.-M. and Hubbard R.-M., Dark respiration of pine, Ecol. Bull., 1994b, 43:50–63

    Google Scholar 

  • Singh B., Nordgren A., Ottosson-löfvenius M., Högberg M.-N., Mellander P.-E. and Högberg P., Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest, extending observations beyond the first year, Plant Cell Environ., 2003, 26: 1,287–1,296

    Google Scholar 

  • Sjögersten S. and Wookey P.-A., Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland, Soil Biol. Biochem., 2002, 34: 1,633–1,646

    Google Scholar 

  • Sowell J.-B. and Spomer G.-G., Ecotypic variation in root respiration rate among elevational populations of Abies lasiocarpa and Picea engelmannii, Oecologia, 1986, 68: 375–379

    Article  Google Scholar 

  • Sprugel D.-G., Components of woody-tissue respiration in young Abies amabilis (Dougl) Forbes trees, Trees, 1990, 4: 88–98

    Article  Google Scholar 

  • Sprugel D.-G., Ryan M.-G., Brooks J.-R., Vogt K.-A. and Martin T.-A., Respiration from the organ level to the stand, In: Smith W.-K. and Hinckley T.-M. eds. Resource physiology of conifers, acquisition, allocation, and utilization, San Diego, Academic Press, 1995, 255–299

    Google Scholar 

  • Stockfors J. and Linder S., Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees, Tree Physiol., 1998, 18: 155–166

    PubMed  Google Scholar 

  • Stockfors J., Temperature variations and distribution of living cells within tree stems, implications for stem respiration modeling and scale-up, Tree Physiol., 2000, 20: 1,057–1,062

    CAS  Google Scholar 

  • Sundberg B., Uglla C. and Tuominen H., Cambial growth and auxin gradients, In: Savidge R., Barnett J. and Napier R. (eds), Cell and Molecular Biology of Wood Formation. Oxford, BIOS Scientific Publishers, 2000: 169–182

    Google Scholar 

  • Teskey R.-O. and Mcguire M.-A., Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and braches of trees, Plant Cell Environ., 2002, 25: 1,571–1,577

    Article  Google Scholar 

  • Tingey D.-T., Phillips D.-L. and Johnson M.-G., Elevated CO2 and conifer roots, effects on growth, life span and turnover, New Phytol., 2000, 147: 87–103

    Article  CAS  Google Scholar 

  • Tjoelker M.-G., Oleksyn J. and Reich P.-B., Modelling respiration of vegetation, evidence for a general temperature-dependent Q 10, Global Chang. Biol., 2001, 7: 223–230

    Article  Google Scholar 

  • Wang W.-J., Kitaoka S., Koike T., Quoreshi A.-M., Takagi K., Kayama M., Ishida N., Mamiya H., Shi F. and Sasa K., Respiration of non-photosynthetic organs and forest soil of Japanese larch plantation and its contribution to CO2 flux estimation, Proceeding of AsiaFlux Network, 2001b, 1: 119–123

    Google Scholar 

  • Wang W.-J., Kitaoka S., Shi F.-C., Sasa K. and Koike T., Respiration rate of stems and roots of a larch plantation with special reference to the seasonal changes in their cambium activity, Proceeding of Joint Siberian Permasfrost Studies between Japan & Russia, 2001a, 9: 42–49

    CAS  Google Scholar 

  • Wang W.-J., Methods for the determination of CO2 flux from non-photosynthetic organs of trees and their influences on the results, Acta Ecol. Sin., 2004, 24: 2,056–2,067

    Google Scholar 

  • Wang W.-J., Yang F.-J., Zu Y.-G., Wang H.-M., Takagi K., Sasa K. and Koike T., Stem respiration of a Larch (Larix gmelini) plantation in Northeast China, Acta Bot. Sin., 2003, 45: 1,387–1,397

    Google Scholar 

  • Wang W.-J., Yu J.-H., Mao Z.-J. and Zu Y.-G., Techniques to estimate the CO2 flux from terrestrial vegetation ecosystem, Chin. J. Ecol., 2003, 22(5): 102–107 [王文杰, 于景华, 毛子军, 祖元刚, 森林生态系统 CO2 通量的研究方法及研究进展, 生态学杂志, 2003, 22 (5): 102–107]

    Google Scholar 

  • Waring R.-H. and Running S.-W., Forest ecosystems, analysis at multiple scales, San Diego: Academic Press, 1998, 1–10

    Google Scholar 

  • Widén B. and Majdi H., Soil CO2 flux and root respiration at three sites in a mixed pine and spruce forest, seasonal and diumal variation, Can. J. For. Res. 2001, 31: 786–796

    Article  Google Scholar 

  • Winkler J.-P., Cherry R.-S. and Schlesinger W.-H., The Q10 relationship of microbial respiration in a temperate forest soil, Soil Biol. Biochem., 1996, 28: 1,067–1,072

    Article  CAS  Google Scholar 

  • Xu M. and Qi Y., Soil surface CO2 efflux and its spatial temporal variations in a young ponderosa pine plantation in northern California, Global Chang. Biol., 2001, 7: 667–677

    Article  Google Scholar 

  • Xu M., DeBiase T.-A. and Qi Y., A simple technique to measure stem respiration using a horizontally oriented soil chamber, Can. J. For. Res., 2000, 30: 1,555–1,560

    Article  Google Scholar 

  • Xu M., Debiase T.-A., Qi Y., Goldstein A. and Liu Z., Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California, Tree Physiol., 2001, 21: 309–18

    CAS  Google Scholar 

  • Yi Z.-G., Yi W.-M., Zhou G.-Y., Zhou L.-X., Zhang D.-Q. and Ding M.-M., Soil carbon effluxes of three major vegetation types in Dinghushan Biosphere Reserve, Acta Ecol. Sin., 2003, 23(8): 1,673–1,678 [易志刚, 蚁伟民, 周国逸, 周丽霞, 张德强, 丁明懋, 鼎湖山三种主要植被类型土壤碳释放研究, 生态学报, 2003, 23(8): 1,673–1,678]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Wenjie.

Additional information

__________

Translated from Acta Phytoecologica Sinica, 2005, 29(4) [译自:植物生态学报, 2005, 29 (4)]

About this article

Cite this article

Wang, W., Wang, H., Zu, Y. et al. Characteristics of the temperature coefficient, Q 10, for the respiration of non-photosynthetic organs and soils of forest ecosystems. Front. Forest. China 1, 125–135 (2006). https://doi.org/10.1007/s11461-006-0018-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11461-006-0018-4

Keywords

Navigation