Skip to main content
Log in

Quantum harmonic oscillator model for simulation of intercity population mobility

  • Research Articles
  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

The simulation of intercity population mobility helps to deepen the understanding of intercity population mobility and its underlying laws, which has great importance for epidemic prevention and control, social management, and even urban planning. There are many factors that affect intercity population mobility, such as socioeconomic attributes, geographical distance, and industrial structure. The complexity of the coupling among these factors makes it difficult to simulate intercity population mobility. To address this issue, we propose a novel method named the quantum harmonic oscillator model for simulation of intercity population mobility (QHO-IPM). QHO-IPM describes the intercity population mobility as being affected by coupled driving factors that work as a multioscillator-coupled quantum harmonic oscillator system, which is further transformed by the oscillation process of an oscillator, namely, the breaking point of intercity population mobility. The intercity population mobility among seven cities in the Beijing-Tianjin-Hebei region and its surrounding region is taken as an example for verifying the QHO-IPM. The experimental results show that (1) compared with the reference methods (the autoregressive integrated moving average (ARIMA) and long and short-term memory (LSTM) models), the QHO-IPM achieves better simulation performance regarding intercity population mobility in terms of both overall trend and mutation. (2) The simulation error in the QHO-IPM for different-level intercity population mobility is small and stable, which illustrates the weak sensitivity of the QHO-IPM to intercity population mobility under different structures. (3) The discussion regarding the influence degree of different driving factors reveals the significant “one dominant and multiple auxiliary” factor pattern of driving factors on intercity population mobility in the study area. The proposed method has the potential to provide valuable support for understanding intercity population mobility laws and related decision-making on intercity population mobility control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Avila A M, Mezić I, 2020. Data-driven analysis and forecasting of highway traffic dynamics. Nature Communications, 11(1): 2090.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbosa H, Barthelemy M, Ghoshal G et al., 2018. Human mobility: Models and applications. Physics Reports, 734: 1–74.

    Article  ADS  MathSciNet  Google Scholar 

  • Biamonte J, Faccin M, De Domenico M, 2019. Complex networks from classical to quantum. Communications Physics, 2(1): 53.

    Article  ADS  Google Scholar 

  • Bonezzi R, Corradini O, Latini E et al., 2017. Quantum mechanics and hidden superconformal symmetry. Physical Review D, 96(12): 126005.

    Article  ADS  MathSciNet  Google Scholar 

  • Cerezo M, Verdon G, Huang H Y et al., 2022. Challenges and opportunities in quantum machine learning. Nature Computational Science, 2(9): 567–576.

    Article  PubMed  CAS  Google Scholar 

  • Ceylan Z, 2020. Estimation of COVID-19 prevalence in Italy, Spain, and France. Science of The Total Environment, 729: 138817.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Chalumuri A, Kune R, Manoj B S, 2020. Training an artificial neural network using qubits as artificial neurons: A quantum computing approach. Procedia Computer Science, 171: 568–575.

    Article  Google Scholar 

  • Chang S, Pierson E, Koh P W et al., 2021. Mobility network models of COVID-19 explain inequities and inform reopening. Nature, 589(7840): 82–87.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Childs A M, Maslov D, Nam Y et al., 2018. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115(38): 9456–9461.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Daley A J, Bloch I, Kokail C et al., 2022. Practical quantum advantage in quantum simulation. Nature, 607(7920): 667–676.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Deutsch D, 1985. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 400(1818): 97–117.

    ADS  MathSciNet  Google Scholar 

  • Dunjko V, Briegel H J, 2018. Machine learning and artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physics, 81(7): 074001.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Fan J, Lian Y, Zhao H, 2022. Review of the research progress in Beijing-Tianjin-Hebei region since 1980. Acta Geographica Sinica, 77(6): 1299–1319. (in Chinese)

    Google Scholar 

  • Fu J, Yang H, Liu P et al., 2018. A CNN-RNN neural network join long short-term memory for crowd counting and density estimation. 2018 IEEE International Conference on Advanced Manufacturing (ICAM): 471–474.

  • Gill S S, Kumar A, Singh H et al., 2022. Quantum computing: A taxonomy, systematic review and future directions. Software: Practice and Experience, 52(1): 66–114.

    Google Scholar 

  • Grining T, Tomza M, Lesiuk M et al., 2015. Many interacting fermions in a one-dimensional harmonic trap: A quantum-chemical treatment. New Journal of Physics, 17(11): 115001.

    Article  ADS  Google Scholar 

  • Grover L K, 1997. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79(2): 325–328.

    Article  ADS  CAS  Google Scholar 

  • Harrow A W, Hassidim A, Lloyd S, 2009. Quantum algorithm for linear systems of equations. Physical Review Letters, 103(15): 150502.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Hsueh Y W, Hsueh C H, Wu W C, 2020. Thermalization in a quantum harmonic oscillator with random disorder. Entropy, 22(8): 855.

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Hu X, Li D, Yu Z et al., 2022a. Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity. Physica A: Statistical Mechanics and Its Applications, 605: 128020.

    Article  MathSciNet  Google Scholar 

  • Hu X, Niu X, Qian L et al., 2022b. Analyzing the multi-scale characteristic for online car-hailing traffic volume with quantum walk. IET Intelligent Transport Systems, 16(10): 1328–1341.

    Article  Google Scholar 

  • Huang Y, Sheng K, Sun W, 2022. Influencing factors of manufacturing agglomeration in the Beijing-Tianjin-Hebei region based on enterprise big data. Journal of Geographical Sciences, 32(10): 2105–2128.

    Article  Google Scholar 

  • Hussain H, Javaid M B, Khan F S et al., 2020. Optimal control of traffic signals using quantum annealing. Quantum Information Processing, 19(9): 1–18.

    Article  Google Scholar 

  • Kempe J, 2003. Quantum random walks: An introductory overview. Contemporary Physics, 44(4): 307–327.

    Article  ADS  Google Scholar 

  • Lee E S, 1966. A theory of migration. Demography, 3(1): 47–57.

    Article  Google Scholar 

  • Lewis W A, 1954. Economic development with unlimited supplies of labour. The Manchester School, 22(2): 139–191.

    Article  Google Scholar 

  • Li T, Wang J, Huang J et al., 2021. Exploring the dynamic impacts of COVID-19 on intercity travel in China. Journal of Transport Geography, 95: 103153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Linke N M, Maslov D, Roetteler M et al., 2017. Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of Sciences, 114(13): 3305–3310.

    Article  ADS  CAS  Google Scholar 

  • Liu E, Yan X, 2019. New parameter-free mobility model: Opportunity priority selection model. Physica A: Statistical Mechanics and Its Applications, 526: 121023.

    Article  Google Scholar 

  • Liu E, Yan X, 2020. Research advances in intervening opportunity class models for predicting human mobility. Acta Physica Sinica, 69(24): 248901.

    Article  Google Scholar 

  • Liu Y, 2018. Research on the urban-rural integration and rural revitalization in the new era in China. Acta Geographica Sinica, 73(4): 637–650. (in Chinese)

    Google Scholar 

  • Mazzoli M, Molas A, Bassolas A et al., 2019. Field theory for recurrent mobility. Nature Communications, 10(1): 3895.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Medvidović M, Carleo G, 2021. Classical variational simulation of the Quantum Approximate Optimization Algorithm. NPJ Quantum Information, 7(1): 101.

    Article  ADS  Google Scholar 

  • Nimbe P, Weyori B A, Adekoya A F, 2021. Models in quantum computing: A systematic review. Quantum Information Processing, 20(2): 80.

    Article  ADS  MathSciNet  Google Scholar 

  • Pan J, Lai J, 2019. Spatial pattern of population mobility among cities in China: Case study of the National Day plus Mid-Autumn Festival based on Tencent migration data. Cities, 94: 55–69.

    Article  Google Scholar 

  • Park D, 2019. Dynamics of entanglement in three coupled harmonic oscillator system with arbitrary time-dependent frequency and coupling constants. Quantum Information Processing, 18(9): 282.

    Article  ADS  MathSciNet  Google Scholar 

  • Peruzzo A, Mcclean J, Shadbolt P et al., 2014. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1): 4213.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Quesne C, 2015. An update on the classical and quantum harmonic oscillators on the sphere and the hyperbolic plane in polar coordinates. Physics Letters A, 379(26): 1589–1593.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Ravenstein E G, 1885. The laws of migration. Journal of the Statistical Society of London, 48(2): 167–227.

    Article  Google Scholar 

  • Rebentrost P, Mohseni M, Lloyd S, 2014. Quantum support vector machine for big data classification. Physical Review Letters, 113(13): 130503.

    Article  ADS  PubMed  Google Scholar 

  • Shen S, Shen G, 2020. Analysis on the spatial structure of inter-provincial migrant in China. Population Journal, 42(4): 103–112. (in Chinese)

    MathSciNet  Google Scholar 

  • Sheng G, 2018. Study on the evolution and explanation of inter-provincial population flow network in China. China Population, Resources and Environment, 28(11): 1–9. (in Chinese)

    Google Scholar 

  • Shi X, Wang S, Wang D et al., 2022. Characteristics and influencing factors of daily population flow among cities in China. Scientia Geographica Sinica, 42(11): 1889–1899. (in Chinese)

    Google Scholar 

  • Shor P W, 1994. Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, 124–134.

  • Simini F, Barlacchi G, Luca M et al., 2021. A Deep Gravity model for mobility flows generation. Nature Communications, 12(1): 6576.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Simini F, González M C, Maritan A et al., 2012. A universal model for mobility and migration patterns. Nature, 484(7392): 96–100.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Smolak K, Rohm W, Knop K et al., 2020. Population mobility modelling for mobility data simulation. Computers, Environment and Urban Systems, 84: 101526.

    Article  Google Scholar 

  • Stouffer S A, 1940. Intervening opportunities: A theory relating mobility and distance. American Sociological Review, 5(6): 845–867.

    Article  Google Scholar 

  • Tan S, Lai S, Fang F et al., 2021. Mobility in China, 2020: A tale of four phases. National Science Review, 8(11): nwab148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang J, Zhang W, Wang Y, 2020. The pattern and influencing factors of daily population movement network in the Yangtze River Delta. Geographical Research, 39(5): 1166–1181. (in Chinese)

    Google Scholar 

  • Toch E, Lerner B, Ben-Zion E et al., 2019. Analyzing large-scale human mobility data: A survey of machine learning methods and applications. Knowledge and Information Systems, 58(3): 501–523.

    Article  Google Scholar 

  • Todaro M P, 1969. A model of labor migration and urban unemployment in less developed countries. The American Economic Review, 59(1): 138–148.

    Google Scholar 

  • Wang G, Pan Z, Lu Y, 2012. China’s inter-provincial migration patterns and influential factors: Evidence from year 2000 and 2010 population census of China. Chinese Journal of Population Science, 32(5): 2–13. (in Chinese)

    ADS  Google Scholar 

  • Wang J, Dong L, Cheng X et al., 2019. An extended exploration and preferential return model for human mobility simulation at individual and collective levels. Physica A: Statistical Mechanics and Its Applications, 534: 121921.

    Article  Google Scholar 

  • Wang S, Fei T, Li W et al., 2022. Incorporation of intra-city human mobility into urban growth simulation: A case study in Beijing. Journal of Geographical Sciences, 32(5): 892–912.

    Article  Google Scholar 

  • Wang X, Ding S, Cao W et al., 2020. Research on network patterns and influencing factors of population flow and migration in the Yangtze River Delta urban agglomeration, China. Sustainability, 12(17): 6803.

    Article  Google Scholar 

  • Wiebe N, Braun D, Lloyd S, 2012. Quantum algorithm for data fitting. Physical Review Letters, 109(5): 050505.

    Article  ADS  PubMed  Google Scholar 

  • Xiao H, Chronopoulos A T, Zhang Z, 2020. An efficient security scheme for vehicular communication using a quantum secret sharing method. IEEE Transactions on Vehicular Technology, 69(1): 1101–1105.

    Article  Google Scholar 

  • Xie P, Li T, Liu J et al., 2020. Urban flow prediction from spatiotemporal data using machine learning: A survey. Information Fusion, 59: 1–12.

    Article  Google Scholar 

  • Yan X, Wang W, Gao Z et al., 2017. Universal model of individual and population mobility on diverse spatial scales. Nature Communications, 8(1): 1639.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Zhao C, Fan Y et al., 2014. Universal predictability of mobility patterns in cities. Journal of The Royal Society Interface, 11(100): 20140834.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang K, Fan B, 2022. The innovative geographical foundation of the relative decline of economic growth in Beijing-Tianjin-Hebei region. Acta Geographica Sinica, 77(6): 1320–1338. (in Chinese)

    Google Scholar 

  • Yu Z, Li D, Hu X et al., 2022. Modeling small-granularity expressway traffic volumes with quantum walks. IEEE Transactions on Intelligent Transportation Systems, 23(10): 17077–17086.

    Article  Google Scholar 

  • Yuan T, Cao W, Chen M et al., 2021a. Research on the spatial pattern of population agglomeration and dispersion in Bejing-Tianjin-Hebei Region from a multidimensional perspective. World Regional Studies, 30(3): 520–532. (in Chinese)

    Google Scholar 

  • Yuan Y, Zhang Z, Yang X T et al., 2021b. Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation. Transportation Research Part B: Methodological, 146: 88–110.

    Article  Google Scholar 

  • Yue T, Liu Y, Du Z et al., 2022. Quantum machine learning of eco-environmental surfaces. Science Bulletin, 67(10): 1031–1033.

    Article  ADS  PubMed  Google Scholar 

  • Yue T, Wu C, Liu Y et al., 2023. HASM quantum machine learning. Science China Earth Sciences, 66(9): 1937–1945.

    Article  ADS  Google Scholar 

  • Zelinsky W, 1971. The hypothesis of the mobility transitio. Geographical Review, 61: 219–249.

    Article  ADS  Google Scholar 

  • Zeroual A, Harrou F, Dairi A et al., 2020. Deep learning methods for forecasting COVID-19 time-series data: A comparative study. Chaos, Solitons & Fractals, 140: 110121.

    Article  MathSciNet  Google Scholar 

  • Zhang J, Zheng Y, Qi D et al., 2018. Predicting citywide crowd flows using deep spatio-temporal residual networks. Artificial Intelligence, 259: 147–166.

    Article  MathSciNet  Google Scholar 

  • Zhao D, Zhang R, Zhang H et al., 2022. Prediction of global omicron pandemic using ARIMA, MLR, and Prophet models. Scientific Reports, 12(1): 18138.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Z, Wei Y, Pang R et al., 2017. Spatiotemporal and structural characteristics of interprovincial population flow during the 2015 spring festival travel rush. Progress in Geography, 36(7): 952–964. (in Chinese)

    Google Scholar 

  • Zhao Z, Wei Y, Yang R et al., 2019. Gravity model coefficient calibration and error estimation: Based on Chinese interprovincial population flow. Acta Geographica Sinica, 74(2): 203–221. (in Chinese)

    Google Scholar 

  • Zipf G K, 1946. The P1 P2/D hypothesis: on the intercity movement of persons. American Sociological Review, 11(6): 677–686.

    Article  Google Scholar 

  • Zúñiga J, Bastida A, Requena A, 2017. Quantum solution of coupled harmonic oscillator systems beyond normal coordinates. Journal of Mathematical Chemistry, 55(10): 1964–1984.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the Tencent location big data platform for providing the data used in this study. Data source: The Tencent location big data platform (https://heat.qq.com/). We also wish to acknowledge WANG Jiaxian for collecting experimental data and for helpful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyuan Yu.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Foundation: National Natural Science Foundation of China, No.42230406, No.42130103, No.41971404, No.42201504

Author: Hu Xu (1997–), PhD Candidate, specialized in population mobility modeling, urban geography, and quantum models and applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Qian, L., Niu, X. et al. Quantum harmonic oscillator model for simulation of intercity population mobility. J. Geogr. Sci. 34, 459–482 (2024). https://doi.org/10.1007/s11442-024-2213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-024-2213-3

Keywords

Navigation