Skip to main content
Log in

A stochastic discrete-time co-evolution model and its application in simulating the impacts of behavior changes on the secondary and multiple outbreaks of the COVID-19 pandemic

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we propose a new stochastic discrete-time multi-scale model to quantify the co-evolution of behavior changes and COVID-19. In this model, initial values and parameters of behavior change are used to describe individual behavior before and during the epidemic, and diagnosis rate parameters are used to describe government policies. In order to comprehensively reflect the characteristics of the epidemic in China, the epidemic data of three representative cities were selected for analysis and research based on the principles of traffic status, epidemic outbreak degree and epidemic data distribution. Firstly, the sensitivity analysis of parameters obtained from data fitting of three cities was carried out, respectively. It was found that different cities have different parameter sensitivities, but the sensitivity of initial value of behavior change was the strongest in all the three cities. Secondly, control measures such as phased unlocking were added to observe the impact of these control measures on secondary outbreaks based on behavior changes. Finally, considering that the Chinese government has fully relaxed the control of the epidemic, we further simulated the epidemic curve with only behavior changes and no government policies, and found that under the same behavior change, the epidemic curve in places with more severe outbreaks will change more, revealing the role of behavior change in secondary and multiple outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data of daily confirmed cases linked to COVID-19 in Yangzhou, Nanjing and Zhengzhou from Health Commission of Jiangsu Province, Nanjing City and Henan Province (Yangzhou: http://wjw.jiangsu.gov.cn/art/2021/7/29/art_7290_9954475.html, Nanjing: http://wjw.nanjing.gov.cn/njswshjhsywyh/202108/t20210801_3089917.html, Zhengzhou: http://wsjkw.henan.gov.cn/ztzl/xxgzbdfyyqfk/yqtb/) and from the corresponding author on request].

References

  1. World health organizatio: Novel coronavirus (2019-ncov). Situation report-1. 21 january 2020, Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4 (accessed on 6 March 2022)

  2. T. Hale, N. Angrist, R. Goldszmidt, B. Kira, A. Petherick, T. Phillips, S. Webster, E. Cameron-Blake, L. Hallas, S. Majumdar et al., A global panel database of pandemic policies (oxford covid-19 government response tracker). Nat. Human Behav. 5(4), 529–538 (2021)

    Article  Google Scholar 

  3. National Health Commission of the People’s Republic of China. Under the joint prevention and control mechanism of the state council, guidelines on normalized prevention and control of covid-19 are issued, available online: http://www.nhc.gov.cn/xcs/xwbd/202005/3fb9d66a8b3345e5926aa37b0dc5e7bc.shtml (accessed on 6 March 2022)

  4. J.J.V. Bavel, K. Baicker, P.S. Boggio, V. Capraro, A. Cichocka, M. Cikara, M.J. Crockett, A.J. Crum, K.M. Douglas, J.N. Druckman et al., Using social and behavioural science to support covid-19 pandemic response. Nat. Human Behav. 4(5), 460–471 (2020)

    Article  Google Scholar 

  5. I. Covid, Forecasting team. modeling covid-19 scenarios for the united states. Nat. Med. 27, 94–105 (2020)

    Google Scholar 

  6. R.J. Hatchett, C.E. Mecher, M. Lipsitch, Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc. Natl. Acad. Sci. 104(18), 7582–7587 (2007)

    Article  ADS  Google Scholar 

  7. M. Lee, J. Zhao, Q. Sun, Y. Pan, W. Zhou, C. Xiong, L. Zhang, Human mobility trends during the early stage of the covid-19 pandemic in the united states. PLoS One 15(11), e0241468 (2020)

    Article  Google Scholar 

  8. C. Xiong, S. Hu, M. Yang, W. Luo, L. Zhang, Mobile device data reveal the dynamics in a positive relationship between human mobility and covid-19 infections. Proc. Natl. Acad. Sci. 117(44), 27087–27089 (2020)

    Article  ADS  Google Scholar 

  9. N. M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg, et al., Impact of non-pharmaceutical interventions (npis) to reduce covid-19 mortality and healthcare demand (2020)

  10. S. Hsiang, D. Allen, S. Annan-Phan, K. Bell, I. Bolliger, T. Chong, H. Druckenmiller, L.Y. Huang, A. Hultgren, E. Krasovich et al., The effect of large-scale anti-contagion policies on the covid-19 pandemic. Nature 584(7820), 262–267 (2020)

    Article  ADS  Google Scholar 

  11. A.J. Kucharski, P. Klepac, A.J. Conlan, S.M. Kissler, M.L. Tang, H. Fry, J.R. Gog, W.J. Edmunds, J.C. Emery, G. Medley et al., Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of sars-cov-2 in different settings: a mathematical modelling study. Lancet Infect. Diseases 20(10), 1151–1160 (2020)

    Article  Google Scholar 

  12. C.J. Worby, H.-H. Chang, Face mask use in the general population and optimal resource allocation during the covid-19 pandemic. Nat. Commun. 11(1), 1–9 (2020)

    Article  ADS  Google Scholar 

  13. V.A. Karatayeva, M. Ananda, C.T. Bauchb, Local lockdowns outperform global lockdown on the far side of the covid-19 epidemic curve. PNAS 117(39), 24575–24580 (2020)

    Article  ADS  Google Scholar 

  14. B. Tang, F. Scarabel, N.L. Bragazzi, Z. McCarthy, M. Glazer, Y. Xiao, J.M. Heffernan, A. Asgary, N.H. Ogden, J. Wu, De-escalation by reversing the escalation with a stronger synergistic package of contact tracing, quarantine, isolation and personal protection: feasibility of preventing a covid-19 rebound in ontario, canada, as a case study. Biology 9(5), 100 (2020)

    Article  Google Scholar 

  15. Z. Du, X. Xu, L. Wang, S.J. Fox, B.J. Cowling, A.P. Galvani, L.A. Meyers, Effects of proactive social distancing on covid-19 outbreaks in 58 cities, china. Emerg. Infect. Diseases 26(9), 2267 (2020)

    Article  Google Scholar 

  16. F. Ahmed, N. Zviedrite, A. Uzicanin, Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review. BMC Public Health 18(1), 1–13 (2018)

    Article  Google Scholar 

  17. S. Funk, M. Salathé, V.A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7(50), 1247–1256 (2010)

    Article  Google Scholar 

  18. F. Verelst, L. Willem, P. Beutels, Behavioural change models for infectious disease transmission: a systematic review (2010–2015). J. R. Soc. Interface 13(125), 20160820 (2016)

    Article  Google Scholar 

  19. P. Manfredi, A. D’Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (Springer Science & Business Media, Berlin, 2013)

    Book  MATH  Google Scholar 

  20. P. Poletti, B. Caprile, M. Ajelli, A. Pugliese, S. Merler, Spontaneous behavioural changes in response to epidemics. J. Theor. Biol. 260(1), 31–40 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. P. Poletti, M. Ajelli, S. Merler, Risk perception and effectiveness of uncoordinated behavioral responses in an emerging epidemic. Math. Biosci. 238(2), 80–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Xu, Z. Peng, People at risk of influenza pandemics: the evolution of perception and behavior. PloS One 10(12), e0144868 (2015)

    Article  Google Scholar 

  23. Summary of the latest epidemic prevention policies of 31 provinces, autonomous regions and municipalities, available online: https://m.weibo.cn/status/4666373739643048?sourceType=weixin &from=10D2095010 &wm=20005_0002 &featurecode=newtitle (accessed on 6 March 2022)

  24. Health Commission of Jiangsu Province. available online: http://wjw.jiangsu.gov.cn/art/2021/7/29/art_7290_9954475.html(accessed on 6 March 2022)

  25. Health Commission of Nanjing City. available online: http://wjw.nanjing.gov.cn/njswshjhsywyh/202108/t20210801_3089917.html(accessed on 6 March 2022)

  26. Health Commission of Henan Province. available online: http://wsjkw.henan.gov.cn/ztzl/xxgzbdfyyqfk/yqtb/(accessed on 6 March 2022)

  27. J. Yang, S. Tang, R.A. Cheke, Impacts of varying strengths of intervention measures on secondary outbreaks of covid-19 in two different regions. Nonlinear Dyn. 104, 863–882 (2021)

    Article  Google Scholar 

  28. B. Tang, W. Zhou, X. Wang, H. Wu, Y. Xiao, Controlling multiple covid-19 epidemic waves: an insight from a multi-scale model linking the behaviour change dynamics to the disease transmission dynamics. Bull. Math. Biol. 84(10), 106 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. d’Onofrio, P. Manfredi, P. Poletti, The impact of vaccine side effects on the natural history of immunization programmes: an imitation-game approach. J. Theor. Biol. 273(1), 63–71 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A. d’Onofrio, P. Manfredi, E. Salinelli, Vaccinating behaviour, information, and the dynamics of sir vaccine preventable diseases. Theor. Popul. Biol. 71(3), 301–317 (2007)

    Article  MATH  Google Scholar 

  31. M. Ajelli, M. Iannelli, P. Manfredi, M.L.C. degli Atti, Basic mathematical models for the temporal dynamics of hav in medium-endemicity italian areas. Vaccine 26(13), 1697–1707 (2008)

    Article  Google Scholar 

  32. P.E. Lekone, B.F. Finkenstädt, Statistical inference in a stochastic epidemic seir model with control intervention: Ebola as a case study. Biometrics 62(4), 1170–1177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. C.J. Mode, C.K. Sleeman, Stochastic Processes in Epidemiology: HIV/AIDS, Other Infectious Diseases and Computers (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  34. T. Sanyi, T. Biao, N. L. Bragazzi, X. Fan, L. Tangjuan, H. Sha, R. Pengyu, W. Xia, C. Xiang, P. Zhihang, et al., Analysis of covid-19 epidemic traced data and stochastic discrete transmission dynamic model. Sci. Sin. Math. (2020)

  35. X. Li, W. Wang, A discrete epidemic model with stage structure. Chaos Solitons Fractals 26(3), 947–958 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. L.J. Allen, P. Van den Driessche, The basic reproduction number in some discrete-time epidemic models. J. Differ. Eqn. Appl. 14(10–11), 1127–1147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. He, S. Tang, L. Rong et al., A discrete stochastic model of the covid-19 outbreak: Forecast and control. Math. Biosci. Eng. 17(4), 2792–2804 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. E. G. for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association, An update on the epidemiological characteristics of novel coronavirus pneumonia (covid-19). Chinese J. Epidemiol. 41(02): 139–144 (2020)

  39. Bulletin of the 7th National Census of Yangzhou City. Available online: http://www.yangzhou.gov.cn/yzszxxgk/tjj/202107/4c6d8f05c4a14a64a1b4038757e0dbcb.shtml(accessed on 6 March 2022)

  40. Nanjing 7th National Census Data. Available online: http://www.nanjing.gov.cn/njxx/202105/t20210524_2945289.html(accessed on 6 March 2022)

  41. Zhengzhou 7th National Census Data. Available online: https://www.henan.gov.cn/2021/05-17/2146167.html(accessed on 6 March 2022)

  42. S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an hiv model, as an example. Int. Sta. Rev., pp. 229–243 (1994)

  43. S. Marino, I.B. Hogue, C.J. Ray, D.E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. M. McKay, R. Beckman, W. Conover, Acomparisonof three methodsforselecting valuesofinputvariablesinthe analysisofoutputfrom acomputercode. Technometrics 21(2), 239–245 (1979)

    MathSciNet  Google Scholar 

  45. C. Xu, Q. Cui, Z. Liu, Y. Pan, X. Cui, W. Ou, Mu. Rahman, M. Farman, S. Ahmad, A. Zeb, Extended hybrid controller design of bifurcation in a delayed chemostat model. MATCH Commun. Math. Comput. Chem. 90(3), 609–648 (2023)

    Article  Google Scholar 

  46. D. Mu, C. Xu, Z. Liu, Y. Pang, Further insight into bifurcation and hybrid control tactics of a chlorine dioxide-iodine-malonic acid chemical reaction model incorporating delays. MATCH Commun. Math. Comput. Chem. 89(3), 529–566 (2023)

    Article  MATH  Google Scholar 

  47. P. Li, Y. Lu, C. Xu, J. Ren, Insight into hopf bifurcation and control methods in fractional order bam neural networks incorporating symmetric structure and delay. Cognitive Comput., pp. 1–43 (2023)

  48. P. Li, R. Gao, C. Xu, J. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on hopf bifurcation of a type of bam neural network models concerning three nonidentical delays. Neural Process. Lett. (2023) (In Press)

  49. P. Li, C. Peng, Xueqing, C. Xu, L. Han, S. Shi, Novel extended mixed controller design for bifurcation control of fractional-order myc/e2f/mir-17-92 network model concerning delay. Math. Methods Appl. Sci. (2023) (In Press)

  50. C. Xu, L. Maoxin, P. Li, L. Yao, Q. Qin, Y. Shang, Chaos control for a fractional-order jerk system via time delay feedback controller and mixed controller. Fractal Fractional 5(3), 257 (2021)

    Article  Google Scholar 

  51. C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks. Neural Process. Lett. 55, 6125–6151 (2023)

    Article  Google Scholar 

  52. C. Xu, D. Mu, Z. Liu, Y. Pang, M. Liao, P. Li, Bifurcation dynamics and control mechanism of a fractional-order delayed brusselator chemical reaction model. MATCH Commun. Math. Comput. Chem. 89(1), 73–106 (2023)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFCs 12031010, 12126350).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanyi Tang or Jie Lou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendices

See Tables 2, 3, and 4.

Table 2 The probability of the secondary outbreak in Yangzhou from the first day to the 31st day after the case clearance varied in different proportions among the susceptible population depending on individual behavior. Data with probability values less than 0.05 are indicated in bold
Table 3 The probability of the secondary outbreak in Nanjing from the first day to the 31st day after the case clearance varied in different proportions among the susceptible population depending on individual behavior. Data with probability values less than 0.05 are indicated in bold
Table 4 The probability of the secondary outbreak in Zhengzhou from the first day to the 31st day after the case clearance varied in different proportions among the susceptible population depending on individual behavior. Data with probability values less than 0.05 are indicated in bold

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tang, S. & Lou, J. A stochastic discrete-time co-evolution model and its application in simulating the impacts of behavior changes on the secondary and multiple outbreaks of the COVID-19 pandemic. Eur. Phys. J. Plus 138, 1086 (2023). https://doi.org/10.1140/epjp/s13360-023-04702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04702-x

Navigation