Skip to main content
Log in

Shielding effects of deep cement mixing column rows on an anchored sheet pile quay in soft clay: three-dimensional centrifuge and numerical modeling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

As a preventative measure to increase the stability of an anchored sheet pile quay in soft clay, deep cement mixing (DCM) column rows erected at the active side behind the quay wall were suggested in the current study. The effect of DCM columns rows on the responses of the quay wall and ground movements was examined using a three-dimensional finite element numerical model of back analysis based on a centrifuge model test. The mechanism of soil arching and the stress transfer from the yielding soil to the stabilizing columns have also been studied using numerical analyses. A parametric study was also conducted to assess the effectiveness of DCM column rows. Results show that the shielding effect of DCM column rows can effectively reduce the negative effects on the quay wall. The effect was brought about by the compression of the lateral soil between the columns caused by stress redistribution, along with the resistance of the column rows in the direction opposite to the soil movement. On the basis of this analysis, some preliminary conclusions can be drawn for the stability improvement of quay wall using DCM column rows in soft clay at the design stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bilgin Ö (2010) Numerical studies of anchored sheet pile wall behavior constructed in cut and fill conditions. Comput Geotech 37(3):399–407. https://doi.org/10.1016/j.compgeo.2010.01.002

    Article  Google Scholar 

  2. Bilgin Ö (2012) Lateral earth pressure coefficients for anchored sheet pile walls. Int J Geomech 12(5):584–595. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000154

    Article  Google Scholar 

  3. Brown DA, Shie CF (1990) Three dimensional finite element model of laterally loaded piles. Comput Geotech 10(1):59–79. https://doi.org/10.1016/0266-352X(90)90008-J

    Article  Google Scholar 

  4. Cai F, Ugai K (2000) Numerical analysis of the stability of a slope reinforced with piles. Soils Found 40(1):73–84. https://doi.org/10.3208/sandf.40.73

    Article  Google Scholar 

  5. Chai XZ, Rózsás Á, Slobbe A, Teixeira A (2022) Probabilistic parameter estimation and reliability assessment of a simulated sheet pile wall system. Comput Geotech 160:142104567. https://doi.org/10.1016/j.compgeo.2021.104567

    Article  Google Scholar 

  6. Chen H, Zhu Z, Wang Z (2020) Constitutive model with double yield surfaces of freeze-thaw soil considering moisture migration. Bull Eng Geol Environ 79(5):2353–2365. https://doi.org/10.1007/s10064-019-01673-1

    Article  Google Scholar 

  7. Chen JF, Li LY, Zhang Z, Zhang X, Xu C, Rajesh S, Feng SZ (2021) Centrifuge modeling of geosynthetic-encased stone column-supported embankment over soft clay. Geotext Geomembr 49(1):210–221. https://doi.org/10.1016/j.geotexmem.2020.10.021

    Article  Google Scholar 

  8. Dang CC, Dang LC, Khabbaz H, Sheng DC (2021) Numerical study on deformation characteristics of fibre-reinforced load-transfer platform and columns-supported embankments. Can Geotech J 58(3):328–350. https://doi.org/10.1139/cgj-2019-0401

    Article  Google Scholar 

  9. Demeijer O, Chen JJ, Li MG, Wang JH, Xu CJ (2018) Influence of passively loaded piles on excavation-induced diaphragm wall displacements and ground settlements. Int J Geomech 18(6):04018052. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001126

    Article  Google Scholar 

  10. Duncan JM, Chang C-Y (1970) Nonlinear analysis of stress and strain in soils. J Soil Mech Found Div 96(5):1629–1653. https://doi.org/10.1061/JSFEAQ.0001458

    Article  Google Scholar 

  11. Fan KW, Yan J, Zou WL, Han Z, Lai ZQ (2022) Active earth pressure on non-yielding retaining walls with geofoam blocks and granular backfills. Transp Geotech 33:33100712. https://doi.org/10.1016/j.trgeo.2021.100712

    Article  Google Scholar 

  12. Fantera L, Lirer S, Desideri A, Rampello S (2022) Efficiency of piles stabilizing slopes in fine-grained soils. Int J Geomech 22(9):04022153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002478

    Article  Google Scholar 

  13. Gu J, Yang J, Wang Y, Lv H (2019) Simulation of carbonate sand with triaxial tests data based on modified model of South water double yield surface. Rock Soil Mech. 40(12):4597–4606. https://doi.org/10.16285/j.rsm.2018.2087

    Article  Google Scholar 

  14. Hsieh HS, Wang CC, Ou CY (2003) Use of jet grouting to limit diaphragm wall displacement of a deep excavation. J Geotech Geoenviron Eng 129(2):146–157. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(146)

    Article  Google Scholar 

  15. Hsieh PG, Ou CY, Hsieh WH (2016) Efficiency of excavations with buttress walls in reducing the deflection of the diaphragm wall. Acta Geotech 11(5):1087–1102. https://doi.org/10.1007/s11440-015-0416-6

    Article  Google Scholar 

  16. Hsieh PG, Ou CY, Lin YL (2013) Three-dimensional numerical analysis of deep excavations with cross walls. Acta Geotech 8(1):33–48. https://doi.org/10.1007/s11440-012-0181-8

    Article  Google Scholar 

  17. Huang J, Han J (2010) Two-dimensional parametric study of geosynthetic-reinforced column-supported embankments by coupled hydraulic and mechanical modeling. Comput Geotech 37(5):638–648. https://doi.org/10.1016/j.compgeo.2010.04.002

    Article  Google Scholar 

  18. Ismail A, Teshome F (2011) Analysis of deformations in soft clay due to unloading. In: Department of Civil and Environmental Engineering, Division of GeoEngineering, Geotechnical Engineering Research Group. Chalmers University of Technology, Gothenburg, Sweden.

  19. Jamsawang P, Voottipruex P, Boathong P, Mairaing W, Horpibulsuk S (2015) Three-dimensional numerical investigation on lateral movement and factor of safety of slopes stabilized with deep cement mixing column rows. Eng Geol 188:159–167. https://doi.org/10.1016/j.enggeo.2015.01.017

    Article  Google Scholar 

  20. Jamsawang P, Voottipruex P, Jongpradist P, Bergado DT (2015) Parameters affecting the lateral movements of compound deep cement mixing walls by numerical simulations and parametric analyses. Acta Geotech 10(6):797–812. https://doi.org/10.1007/s11440-015-0417-5

    Article  Google Scholar 

  21. Jamsawang P, Yoobanpot N, Thanasisathit N, Voottipruex P, Jongpradist P (2016) Three-dimensional numerical analysis of a DCM column-supported highway embankment. Comput Geotech 72(2):42–56. https://doi.org/10.1016/j.compgeo.2015.11.006

    Article  Google Scholar 

  22. Khan M, Hayano K, Kitazume M (2008) Investigation on static stability of sheet pile quay wall improved by cement treated sea-side ground from centrifuge model tests. Soils Found 48(4):563–575. https://doi.org/10.3208/sandf.48.563

    Article  Google Scholar 

  23. Khan MRA, Hayano K, Kitazume M (2009) Behavior of sheet pile quay wall stabilized by sea-side ground improvement in dynamic centrifuge tests. Soils Found 49(2):193–206. https://doi.org/10.3208/sandf.49.193

    Article  Google Scholar 

  24. Kourkoulis R, Gelagoti F, Anastasopoulos I, Gazetas G (2011) Slope stabilizing piles and pile-groups: parametric study and design insights. J Geotech Geoenviron Eng 137(7):663–677. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000479

    Article  Google Scholar 

  25. Lam SY, Ng CWW, Leung CF, Chan SH (2009) Centrifuge and numerical modeling of axial load effects on piles in consolidating ground. Can Geotech J 46(1):10–24. https://doi.org/10.1139/T08-095

    Article  Google Scholar 

  26. Lee CJ, Bolton MD, Al-Tabbaa A (2002) Numerical modelling of group effects on the distribution of dragloads in pile foundations. Géotechnique 52(5):325–335. https://doi.org/10.1680/geot.2002.52.5.325

    Article  Google Scholar 

  27. Leung CF, Ong DE, Chow YK (2006) Pile Behavior due to excavation-induced soil movement in Clay. II: collapsed wall. J Geotech Geoenviron Eng. 132(1):45–53. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:1(45)

    Article  Google Scholar 

  28. Li YQ, Zhang WG, Zhang RH (2022) Numerical investigation on performance of braced excavation considering soil stress-induced anisotropy. Acta Geotech 17(2):563–575. https://doi.org/10.1007/s11440-021-01171-3

    Article  Google Scholar 

  29. Lim A, Hsieh PG, Ou CY (2016) Evaluation of buttress wall shapes to limit movements induced by deep excavation. Comput Geotech 78:155–170. https://doi.org/10.1016/j.compgeo.2016.05.012

    Article  Google Scholar 

  30. Liu K, Xu XB, Hu Q, Zeng LB, Wang JC (2022) 1g model test on the use of isolation piles for tunnel protection adjacent to soft soil excavation. Transp Geotech. 35:100790. https://doi.org/10.1016/j.trgeo.2022.100790

    Article  Google Scholar 

  31. Liyanapathirana DS, Nishanthan R (2016) Influence of deep excavation induced ground movements on adjacent piles. Tunn Undergr Space Technol 52:168–181. https://doi.org/10.1016/j.tust.2015.11.019

    Article  Google Scholar 

  32. Lu H, Shi JW, Ng CWW, Lv YR (2020) Three-dimensional centrifuge modeling of the influence of side-by-side twin tunneling on a piled raft. Tunn Undergr Space Technol 103:103484. https://doi.org/10.1016/j.tust.2020.103486

    Article  Google Scholar 

  33. Ma H, Chi F (2016) Major technologies for safe construction of high earth-rockfill dams. Engineering 2(4):498–509. https://doi.org/10.1016/J.ENG.2016.04.001

    Article  MathSciNet  Google Scholar 

  34. Miao LF, Goh A, Wong K, Teh C (2006) Three-dimensional finite element analyses of passive pile behaviour. Int J Numer Anal Methods Geomech 30(7):599–613. https://doi.org/10.1002/nag.493

    Article  Google Scholar 

  35. MOT (2018) Design specifications for pier structures, JTS167-2018. China People’s Traffic Press, Beijing

    Google Scholar 

  36. Ng CWW, Poulos HG, Chan VSH, Lam SSY, Chan GCY (2008) Effects of tip location and shielding on piles in consolidating ground. J Geotech Geoenviron Eng 134(9):1245–1260. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1245)

    Article  Google Scholar 

  37. Ng CWW, Shakeel M, Wei JQ, Lin SY (2021) Performance of existing piled raft and pile group due to adjacent multipropped excavation: 3d centrifuge and numerical modeling. J Geotech Geoenviron Eng 147(4):04021012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002501

    Article  Google Scholar 

  38. Ng CWW, Wei JQ, Poulos H, Liu HL (2017) Effects of multipropped excavation on an adjacent floating pile. J Geotech Geoenviron Eng 143(7):04017021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001696

    Article  Google Scholar 

  39. Nishanthan R, Liyanapathirana D, Leo CJ (2017) Shielding effect in pile groups adjacent to deep unbraced and braced excavations. Int J Geotech Eng 11(2):162–174. https://doi.org/10.1080/19386362.2016.1200270

    Article  Google Scholar 

  40. Oliveira P, Pinheiro J, Correia A (2011) Numerical analysis of an embankment built on soft soil reinforced with deep mixing columns: parametric study. Comput Geotech 38(4):566–576. https://doi.org/10.1016/j.compgeo.2011.03.005

    Article  Google Scholar 

  41. Ong DE, Leung CE, Chow YK (2006) Pile behavior due to excavation-induced soil movement in Clay. I: stable wall. J Geotech Geoenviron Eng 132(1):36–44. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:1(36)

    Article  Google Scholar 

  42. Ou CY, Hsieh PG, Lin YL (2013) A parametric study of wall deflections in deep excavations with the installation of cross walls. Comput Geotech 50:55–65. https://doi.org/10.1016/j.compgeo.2012.12.009

    Article  Google Scholar 

  43. Ou CY, Teng FC, Wang IW (2008) Analysis and design of partial ground improvement in deep excavations. Comput Geotech 35(4):576–584. https://doi.org/10.1016/j.compgeo.2007.09.005

    Article  Google Scholar 

  44. Pourakbar M, Khosravi M, Soroush A, Hung WY, Hoang KK, Nabizadeh A (2022) Dynamic centrifuge tests to evaluate the seismic performance of an embankment resting on liquefiable ground improved by unreinforced and reinforced soil-cement columns. J Geotech Geoenviron Eng 148(12):04022106. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002891

    Article  Google Scholar 

  45. Qiu G, Grabe J (2012) Active earth pressure shielding in quay wall constructions: numerical modeling. Acta Geotech 7(4):343–355. https://doi.org/10.1007/s11440-012-0186-3

    Article  Google Scholar 

  46. Ruggeri P, Fruzzetti VME, Scarpelli G (2019) Renovation of quay walls to meet more demanding requirements: italian experiences. Coast Eng 147:25–33. https://doi.org/10.1016/j.coastaleng.2019.01.003

    Article  Google Scholar 

  47. Shen SL, Wang ZF, Cheng WC (2017) Estimation of lateral displacement induced by jet grouting in clayey soils. Géotechnique 67(7):621–630. https://doi.org/10.1680/jgeot.16.P.159

    Article  Google Scholar 

  48. Shen Z (1994) “Nanshui” double yield surfaces model and its application. In: Proceedings of academic symposium on soil mechanics and foundation engineering and geotechnical engineering on both sIdes of the Taiwan Strait.

  49. Shi JW, Wei JQ, Ng CWW, Lu H (2019) Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand. Comput Geotech 116:103216. https://doi.org/10.1016/j.compgeo.2019.103216

    Article  Google Scholar 

  50. Tan HM, Jiao ZB, Chen FM, Chen J (2018) Field testing of anchored diaphragm quay wall supported using barrette piles. J Waterw Port Coast Ocean Eng 144(4):05018004. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000456

    Article  Google Scholar 

  51. Tan HM, Jiao ZB, Chen J (2018) Field testing and numerical analysis on performance of anchored sheet pile quay wall with separate pile-supported platform. Marine Struct 58:382–398. https://doi.org/10.1016/j.marstruc.2017.12.006

    Article  Google Scholar 

  52. Taylor RN (1995) Geotechnical Centrifuge Technology. Geotechnical Centrifuge Technology.

  53. Terzaghi K (1936) Stress distribution in dry and in saturated sand above a yielding trap-door.

  54. Waichita S, Jongpradist P, Jamsawang P (2019) Characterization of deep cement mixing wall behavior using wall-to-excavation shape factor. Tunn Undergr Space Technol 83:243–253. https://doi.org/10.1016/j.tust.2018.09.033

    Article  Google Scholar 

  55. Waichita S, Jongpradist P, Schweiger HF (2020) Numerical and experimental investigation of failure of a DCM-wall considering softening behaviour. Comput Geotech 119:103380. https://doi.org/10.1016/j.compgeo.2019.103380

    Article  Google Scholar 

  56. White DJ, Take WA, Bolton MD (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Géotechnique 53(7):619–631. https://doi.org/10.1680/geot.2003.53.7.619

    Article  Google Scholar 

  57. Wonglert A, Jongpradist P, Jamsawang P, Larsson S (2018) Bearing capacity and failure behaviors of floating stiffened deep cement mixing columns under axial load. Soils Found 58(2):446–461. https://doi.org/10.1016/j.sandf.2018.02.012

    Article  Google Scholar 

  58. Yan Z, Zhang HQ, Xie MX, Han RR (2021) Centrifuge bearing behaviors of batter-piled wharf under lateral cyclic loading. Ocean Eng 226:108824. https://doi.org/10.1016/j.oceaneng.2021.108824

    Article  Google Scholar 

  59. Yapage NNS, Liyanapathirana DS, Kelly RB, Poulos HG, Leo CJ (2014) Numerical modeling of an embankment over soft ground improved with deep cement mixed columns: case history. J Geotech Geoenviron Eng 140(11):04014062. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001165

    Article  Google Scholar 

  60. Yapage NNS, Liyanapathirana DS, Poulos HG, Kelly RB, Leo CJ (2015) Numerical modeling of geotextile-reinforced embankments over deep cement mixed columns incorporating strain-softening behavior of columns. Int J Geomech 15(2):04014047. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000341

    Article  Google Scholar 

  61. Ye GB, Zhang QW, Zhang Z, Chang HT (2015) Centrifugal modeling of a composite foundation combined with soil–cement columns and prefabricated vertical drains. Soils Found 55(5):1259–1269. https://doi.org/10.1016/j.sandf.2015.09.024

    Article  Google Scholar 

  62. Zhang CL, Su LJ, Chen WZ, Jiang GL (2021) Full-scale performance testing of bored piles with retaining walls in high cutting slope. Transp Geotech 29:100563. https://doi.org/10.1016/j.trgeo.2021.100563

    Article  Google Scholar 

  63. Zhao WH, Du CB, Sun LG, Chen XC (2019) Field measurements and numerical studies of the behaviour of anchored sheet pile walls constructed with excavating and backfilling procedures. Eng Geol 259:105165. https://doi.org/10.1016/j.enggeo.2019.105165

    Article  Google Scholar 

  64. Zheng G, He X, Zhou H (2023) A prediction model for the deformation of an embedded cantilever retaining wall in sand. Int J Geomech 23(3):06023001

    Article  Google Scholar 

  65. Zhou H, Hu Q, Yu X, Zheng G, Liu X, Xu H, Yang S, Liu J, Tian K (2023) Quantitative bearing capacity assessment of strip footings adjacent to two-layered slopes considering spatial soil variability. Acta Geotech. https://doi.org/10.1007/s11440-023-01875-8

    Article  Google Scholar 

  66. Zhou H, Shi Y, Yu X, Xu H, Zheng G, Yang S, He Y (2023) Failure mechanism and bearing capacity of rigid footings placed on top of cohesive soil slopes in spatially random soil. Int J Geomech 23(8):04023110. https://doi.org/10.1061/IJGNAI.GMENG-8306

    Article  Google Scholar 

  67. Zhou H, Zheng G, Yang X, Li T, Yang P (2019) Ultimate seismic bearing capacities and failure mechanisms for strip footings placed adjacent to slopes. Can Geotech J 56(11):1729–1735. https://doi.org/10.1139/cgj-2018-0306

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by funds of the National Natural Science Foundation of China (NSFC) (Grant Nos. 51208321 and 52271286) and the Innovation Team Foundation Project of Nanjing Hydraulic Research Institute (NHRI) (Grant No. Y321008). The authors would also like to acknowledge the valuable suggestions of Prof. Zhengyin Cai, Prof. Guangming Xu and Prof. Nianxiang Wang for the centrifuge testing

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Guan, Y. & Dai, J. Shielding effects of deep cement mixing column rows on an anchored sheet pile quay in soft clay: three-dimensional centrifuge and numerical modeling. Acta Geotech. 19, 2145–2161 (2024). https://doi.org/10.1007/s11440-023-02022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-02022-z

Keywords

Navigation