Skip to main content
Log in

Constitutive model with double yield surfaces of freeze-thaw soil considering moisture migration

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

In cold regions, the effects of moisture migration will destroy the original structure of the soil and cause the redistribution of moisture inside the soil. In order to research the effects of moisture migration on soil’s mechanics behaviors under freeze-thaw cycles, an elastoplastic constitutive model with double yield surfaces considering moisture migration was proposed based on the internal state variables (ISV) theory. The amount of moisture migration was obtained by the segregation potential model and used as an intrinsic variable to obtain the Helmholtz free energy function coupled with the amount of moisture migration. Two kinds of plastic deformation mechanisms, including plastic volumetric compression and plastic shear, were considered to develop the coupled model based on the ISV theory with moisture migration. This model was given in incremental form, and detailed numerical calculation processes were described. The proposed model was concretized with elliptic-parabolic yield surfaces and validated by tests under different freeze-thaw cycles and different confining pressure. Desirably, the calculated deviatoric stress-axial strain curves and volumetric strain-axial strain curves agreed well with the test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chamberlain EJ, Gow AJ (1979) Effect of freezing and thawing on the permeability and structure of soils. Eng Geol 13:73–92

    Article  Google Scholar 

  • Chang D, Liu J, Li X (2016) A constitutive model with double yielding surfaces for silty sand after freeze-thaw cycles. Chin J Rock Mech Eng 35:623–630

    Google Scholar 

  • Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47:597–613

    Article  Google Scholar 

  • Collins IF, Kelly PA (2002) A thermomechanical analysis of a family of soil models. Geotechnique 52:507–518

    Article  Google Scholar 

  • Fremond M, Mikkola M (1991) Thermomechanical modelling of freezing soil. Gr Freez 91:17–24

    Google Scholar 

  • Gavrilova MK (1993) Climate and permafrost. Permafr Periglac Process 4:99–111

    Article  Google Scholar 

  • Gilpin RR (1980) A model for the prediction of ice lensing and frost heave in soils. Water Resour Res 16:918–930

    Article  Google Scholar 

  • He J, Zhu Z, Luo F et al (2019) Energy consumption analysis of frozen sandy soil and an improved double yield surface elastoplastic model considering the particle breakage. Adv Civ Eng:2019

  • Horstemeyer MF, Bammann DJ (2010) Historical review of internal state variable theory for inelasticity. Int J Plast 26:1310–1334

    Article  Google Scholar 

  • Hu T, Liu J, Wang T, Yue Z (2019) Effect of freeze-thaw cycles on the deformation characteristics of a silty clay and its constitutive model with double yielding surfaces. Rock Soil Mech 40

  • Ji Y, Zhou G, Hall MR (2018) Frost heave and frost heaving-induced pressure under various restraints and thermal gradients during the coupled thermal–hydro processes in freezing soil. Bull Eng Geol Environ 1–13

  • Konrad J-M (1999) Frost susceptibility related to soil index properties. Can Geotech J 36:403–417

    Article  Google Scholar 

  • Konrad J-M, Morgenstern NR (1980) A mechanistic theory of ice lens formation in fine-grained soils. Can Geotech J 17:473–486

    Article  Google Scholar 

  • Konrad J-M, Morgenstern NR (1981) The segregation potential of a freezing soil. Can Geotech J 18:482–491

    Article  Google Scholar 

  • Lade PV (1977) Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int J Solids Struct 13:1019–1035

    Article  Google Scholar 

  • Lai Y, Pei W, Zhang M, Zhou J (2014) Study on theory model of hydro-thermal–mechanical interaction process in saturated freezing silty soil. Int J Heat Mass Transf 78:805–819

    Article  Google Scholar 

  • Lai Y, Liao M, Hu K (2016) A constitutive model of frozen saline sandy soil based on energy dissipation theory. Int J Plast 78:84–113

    Article  Google Scholar 

  • Lemaitre J (2012) A course on damage mechanics. Springer Science & Business Media

  • Li N, Chen B, Chen F, Xu X (2000a) The coupled heat-moisture-mechanic model of the frozen soil. Cold Reg Sci Technol 31:199–205

    Article  Google Scholar 

  • Li P, Xu X, Chen F (2000b) State and progress of research on the frozen fringe and frost heave prediction Models. J Glaciol Geocryol 22:85–90

    Google Scholar 

  • Li J, Zhou K, Liu W, Zhang Y (2018) Analysis of the effect of freeze–thaw cycles on the degradation of mechanical parameters and slope stability. Bull Eng Geol Environ 77:573–580

    Article  Google Scholar 

  • Miller RD (1972) Freezing and heaving of saturated and unsaturated soils. Highw Res Rec 393:1–11

    Google Scholar 

  • Min Y, Hufangfu Y, Mao X (2015) Freeze depth predicting of permafrost subgrade based on moisture and thermal coupling model. KSCE J Civ Eng 19:1707–1715

    Article  Google Scholar 

  • O’Neill K, Miller RD (1985) Exploration of a rigid ice model of frost heave. Water Resour Res 21:281–296

    Article  Google Scholar 

  • Qi J, Vermeer PA, Cheng G (2006) A review of the influence of freeze–thaw cycles on soil geotechnical properties. Permafr Periglac Process 17:245–252

    Article  Google Scholar 

  • Shen Z (1994) “Nanshui” double yield surfaces model and its application. In: Proceedings of Academic Symposium on Soil Mechanics and Foundation Engineering and Geotechnical Engineering on Both sIdes of the Taiwan Strait

  • Shoop SA, Bigl SR (1997) Moisture migration during freeze and thaw of unsaturated soils: modeling and large scale experiments. Cold Reg Sci Technol 25:33–45

    Article  Google Scholar 

  • Vermeer PA (1978) A double hardening model for sand. Geotechnique 28:413–433

    Article  Google Scholar 

  • Wang Z, Zhu Z, Chen H, Zhu S (2019) Study on rock stress-temperature-moisture coupled constitutive model under freezing-thawing cycle. Chinese J Rock Mech Eng Press

  • Xu J, Wang Z, Ren J, Yuan J (2016) Experimental research on permeability of undisturbed loess during the freeze-thaw process. J Hydraul Eng 47:1208–1217

    Google Scholar 

  • Ye W, Li C (2018) The consequences of changes in the structure of loess as a result of cyclic freezing and thawing. Bull Eng Geol Environ:1–14

  • Zhao R, Zhang S, Gao W et al (2019) Factors effecting the freeze thaw process in soils and reduction in damage due to frosting with reinforcement: a review. Bull Eng Geol Environ:1–10

  • Zheng YR, Shen ZJ, Gong XN (2002) The principles of geotechnical plastic mechanics. China Architecture and Building Press, Beijing

    Google Scholar 

  • Zhou CY, Zhu FX (2010) An elasto-plastic damage constitutive model with double yield surfaces for saturated soft rock. Int J Rock Mech Min Sci 47:385–395

    Article  Google Scholar 

  • Zong-ze YIN (1988) Constitutive model with two yield surfaces for soils [C]. In: Proceedings of 6th International Conference on Numerical Methods in Geomechanics. Balkema, Rotterdam, pp 447–452

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [NSFC, Grant no. 51878249], and the National Natural Science Foundation of China [NSFC, Grant no. 51379065]. The authors are deeply indebted to these financial supporters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiguan Chen.

Appendix 1

Appendix 1

The specific form of the proposed model with elliptic-parabolic yield surfaces can be expressed as:

$$ \frac{1}{K}+\frac{1}{N_1}\frac{\partial {f}_1}{\partial p}\frac{\partial {g}_1}{\partial p}+\frac{1}{N_2}\frac{\partial {f}_2}{\partial p}\frac{\partial {g}_2}{\partial p}=\frac{1}{K}+\frac{1-\frac{q^2}{M_1^2{\left(p+{p}_r\right)}^2}}{\frac{h{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}}+\frac{{\left[\frac{-a{M}_2{q}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}{2G{\left[{M}_2\left(p+{p}_r\right)-q\right]}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}\right]}^2}{\frac{a}{G}\sqrt{\frac{q}{M_2\left(p+{p}_r\right)-q}}+\frac{a{q}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}{M}_2\left(p+{p}_r\right)}{2G{\left[{M}_2\left(p+{p}_r\right)-q\right]}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}} $$
(63)
$$ \frac{1}{N_1}\frac{\partial {f}_1}{\partial q}\frac{\partial {g}_1}{\partial p}+\frac{1}{N_2}\frac{\partial {f}_2}{\partial q}\frac{\partial {g}_2}{\partial p}=\frac{\frac{2q}{M_1^2\left(p+{p}_r\right)}}{\frac{h{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}}+\frac{-a{M}_2{q}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}{2G{\left[{M}_2\left(p+{p}_r\right)-q\right]}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}} $$
(64)
$$ \frac{C_1}{N_1}+\frac{D_1}{N_2}=\frac{-\left[\frac{\varepsilon_v^{p1}{p}_a}{1-t{\varepsilon}_v^{p1}}{\varsigma}_6+\frac{ht{\varepsilon}_v^{p1}{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}{\varsigma}_7\right]}{\frac{h{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}} $$
(65)
$$ \frac{C_2}{N_1}+\frac{D_2}{N_2}=\frac{-\left[\frac{\varepsilon_v^{p1}{p}_a}{1-t{\varepsilon}_v^{p1}}{\xi}_6+\frac{ht{\varepsilon}_v^{p1}{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}{\xi}_7\right]}{\frac{h{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}} $$
(66)
$$ \frac{1}{N_1}\frac{\partial {f}_1}{\partial p}\frac{\partial {g}_1}{\partial q}+\frac{1}{N_2}\frac{\partial {f}_2}{\partial p}\frac{\partial {g}_2}{\partial q}=\frac{\frac{2q}{M_1^2\left(p+{p}_r\right)}}{\frac{h{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}}+\frac{-a{M}_2{q}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}}{2G{\left[{M}_2\left(p+{p}_r\right)-q\right]}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}} $$
(67)
$$ \frac{1}{3G}+\frac{1}{N_1}\frac{\partial {f}_1}{\partial q}\frac{\partial {g}_1}{\partial q}+\frac{1}{N_2}\frac{\partial {f}_2}{\partial q}\frac{\partial {g}_2}{\partial q}=\frac{1}{3G}+\frac{{\left[\frac{2q}{M_1^2\left(p+{p}_r\right)}\right]}^2}{\frac{h{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}\left[1-\frac{q^2}{M_1^2{\left(p+{p}_r\right)}^2}\right]}+\frac{a}{G}\sqrt{\frac{q}{M_2\left(p+{p}_r\right)-q}}+\frac{a{q}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}{M}_2\left(p+{p}_r\right)}{2G{\left[{M}_2\left(p+{p}_r\right)-q\right]}^{\raisebox{1ex}{$3$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}} $$
(68)
$$ \frac{C_3}{N_1}+\frac{D_3}{N_2}=\frac{-\frac{2q}{M_1^2\left(p+{p}_r\right)}\left[\frac{\varepsilon_v^{p1}{p}_a}{1-t{\varepsilon}_v^{p1}}{\varsigma}_6+\frac{ht{\varepsilon}_v^{p1}{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}{\varsigma}_7\right]}{\frac{h{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}\left[1-\frac{q^2}{M_1^2{\left(p+{p}_r\right)}^2}\right]} $$
(69)
$$ \frac{C_4}{N_1}+\frac{D_4}{N_2}=\frac{-\frac{2q}{M_1^2\left(p+{p}_r\right)}\left[\frac{\varepsilon_v^{p1}{p}_a}{1-t{\varepsilon}_v^{p1}}{\xi}_6+\frac{ht{\varepsilon}_v^{p1}{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}{\xi}_7\right]}{\frac{h{p}_a}{{\left(1-t{\varepsilon}_v^{p1}\right)}^2}\left[1-\frac{q^2}{M_1^2{\left(p+{p}_r\right)}^2}\right]} $$
(70)

where ςi are coefficients affected by temperature, ξj are coefficients affected by moisture migration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhu, Z. & Wang, Z. Constitutive model with double yield surfaces of freeze-thaw soil considering moisture migration. Bull Eng Geol Environ 79, 2353–2365 (2020). https://doi.org/10.1007/s10064-019-01673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-019-01673-1

Keywords

Navigation