Skip to main content
Log in

Laboratory investigations on activation characteristics of fracture induced by fluid injection and unloading of normal stress

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The activation of fractures and faults associated with stress perturbations is frequently encountered in various engineering applications. Understanding the hydraulic response mechanisms governing fractures and faults activation is vital to mitigate the risk of seismicity induced by deep resource extraction. To characterize the fracture activation behavior and explore the hydraulic response mechanisms, laboratory experiments on fracture activation induced by fluid injection and unloading normal stress were conducted. The results demonstrate that fracture activation induced by fluid pressurization and unloading normal stress present quasi-dynamic sliding and dynamic slip, respectively. Due to the severe damage of fracture asperities under fluid injection, the 3D roughness index shows a decreasing trend with increase of normal stress, suggesting that the governing deformation mechanism of fracture activation exhibits a transition from dilation to slip. The fracture frictional instability characteristics were further discussed through fluid pressurization rate variations. Under the condition of unloading normal stress, the fracture activation is mainly controlled by the slip mechanism, and the magnitude of fracture deformation is larger than that of fluid injection. Compared with the heterogeneous stress perturbation caused by fluid injection, unloading normal stress triggers faster slip rates and is accompanied by greater energy release, indicating that the unloading-induced fracture activation is more efficient and also has a higher potential to induce seismic hazards for natural faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated within the scope of the current study are available from the corresponding author on reasonable request.

References

  1. An M, Zhang F, Elsworth D, Xu Z, Chen Z, Zhang L (2020) Friction of longmaxi shale gouges and implications for seismicity during hydraulic fracturing. J Geophys Res Solid Earth 125(8):e2020JB019885. https://doi.org/10.1029/2020JB019885

    Article  Google Scholar 

  2. Atkinson GM, Eaton DW, Ghofrani H et al (2016) Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismol Res Lett 87(3):631–647. https://doi.org/10.1785/0220150263

    Article  Google Scholar 

  3. Barton N (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7(4):287–332. https://doi.org/10.1016/0013-7952(73)90013-6

    Article  Google Scholar 

  4. Belem T, Homand-Etienne F, Souley M (2000) Quantitative parameters for rock joint surface roughness. Rock Mech Rock Eng 33(4):217–242. https://doi.org/10.1007/s006030070001

    Article  Google Scholar 

  5. Brace WF, Byerlee JD (1966) Stick-slip as a mechanism for earthquakes. Science 153(3739):990–992. https://doi.org/10.1126/science.153.3739.990

    Article  Google Scholar 

  6. Cappa F, Guglielmi Y, Nussbaum C, Birkholzer J (2018) On the relationship between fault permeability increases, induced stress perturbation, and the growth of aseismic slip during fluid injection. Geophys Res Lett 45(20):11–012. https://doi.org/10.1029/2018GL080233

    Article  Google Scholar 

  7. Chen J, Shi K, Pu Y, Apel D, Zhang C, Zuo Y, Chen J, Xu L, Gui Z, Song L (2023) Study on instability fracture and simulation of surrounding rock induced by fault activation under mining influence. Rock Mech Bull 2:100037. https://doi.org/10.1016/j.rockmb.2023.100037

    Article  Google Scholar 

  8. Cornet FH (2015) Earthquakes induced by fluid injections. Science 348(6240):1204–1205. https://doi.org/10.1126/science.aab3820

    Article  Google Scholar 

  9. Cui G, Zhang C, Chen J, Yang F, Zhou H, Lu J (2020) Effect of bolt inclination angle on shear behavior of bolted joints under CNL and CNS conditions. J Cent South Univ 27(3):937–950. https://doi.org/10.1007/s11771-020-4342-x

    Article  Google Scholar 

  10. Dieterich JH (1979) Modeling of rock friction: 1. Experimental results and constitutive equations. J Geophys Res: Solid Earth 84:2161–2168. https://doi.org/10.1029/JB084iB05p02161

    Article  Google Scholar 

  11. Ding C, Zhang Y, Teng Q et al (2020) A method to experimentally investigate injection-induced activation of fractures. J Rock Mech Geotech Eng 12(6):1326–1332. https://doi.org/10.1016/j.jrmge.2020.04.002

    Article  Google Scholar 

  12. Doglioni C (2018) A classification of induced seismicity. Geosci Front 9(6):1903–1909. https://doi.org/10.1016/j.gsf.2017.11.015

    Article  Google Scholar 

  13. El-Soudani SM (1978) Profilometric analysis of fractures. Metallography 11(3):247–336. https://doi.org/10.1016/0026-0800(78)90045-9

    Article  Google Scholar 

  14. Ellsworth WL (2013) Injection-induced earthquakes. Science 341(6142):1225942. https://doi.org/10.1126/science.1225942

    Article  Google Scholar 

  15. Elsworth D, Spiers CJ, Niemeijer AR (2016) Understanding induced seismicity. Science 354(6318):1380–1381. https://doi.org/10.1126/science.aal258

    Article  Google Scholar 

  16. Fan WC, Cao P, Long L (2018) Degradation of joint surface morphology, shear behavior and closure characteristics during cyclic loading. J Cent South Univ 25:653–661. https://doi.org/10.1007/s11771-018-3768-x

    Article  Google Scholar 

  17. Fang Y, Elsworth D, Wang C, Ishibashi T, Fitts JP (2017) Frictional stability-permeability relationships for fractures in shales. J Geophys Res Solid Earth 122(3):1760–1776. https://doi.org/10.1002/2016JB013435

    Article  Google Scholar 

  18. Frash LP, Carey JW, Lei Z, Rougier E, Ickes T, Viswanathan HS (2016) High-stress triaxial direct-shear fracturing of Utica shale and in situ X-ray microtomography with permeability measurement. J Geophys Res Solid Earth 121(7):5493–5508. https://doi.org/10.1002/2016JB012850

    Article  Google Scholar 

  19. Frash LP, Carey JW, Welch NJ, Team EC (2019) EGS Collab experiment 1 geomechanical and hydrological properties by triaxial direct shear. In: 44th Workshop on geothermal reservoir engineering, 11–13 February, American

  20. French ME, Zhu W, Banker J (2016) Fault slip controlled by stress path and fluid pressurization rate. Geophys Res Lett 43(9):4330–4339. https://doi.org/10.1002/2016GL068893

    Article  Google Scholar 

  21. Gale JF, Laubach SE, Olson JE, Eichhubl P, Fall A (2014) Natural fractures in shale: a review and new observations. AAPG Bull 98(11):2165–2216. https://doi.org/10.1306/08121413151

    Article  Google Scholar 

  22. Grasselli G, Wirth J, Egger P (2002) Quantitative three-dimensional description of a rough surface and parameter evolution with shearing. Int J Rock Mech Min Sci 39(6):789–800. https://doi.org/10.1016/S1365-1609(02)00070-9

    Article  Google Scholar 

  23. Grigoli F, Cesca S, Rinaldi AP, Manconi A, Lopez-Comino JA, Clinton JF et al (2018) The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea. Science 360(6392):1003–1006. https://doi.org/10.1126/science.aat2010

    Article  Google Scholar 

  24. Guglielmi Y, Cappa F, Avouac JP, Henry P, Elsworth D (2015) Seismicity triggered by fluid injection-induced aseismic slip. Science 348(6240):1224–1226. https://doi.org/10.1126/science.aab0476

    Article  Google Scholar 

  25. Guglielmi Y, Nussbaum C, Jeanne P, Rutqvist J, Cappa F, Birkholzer J (2020) Complexity of fault rupture and fluid leakage in shale: insights from a controlled fault activation experiment. J Geophys Res Solid Earth 125(2):e2019JB017781. https://doi.org/10.1029/2019JB017781

    Article  Google Scholar 

  26. Guglielmi YG, Henry P, Nussbaum C, Dick P, Gout C, Amann F (2015b) Underground Research Laboratories for conducting fault activation experiments in shales. In: 49th US rock mechanics/geomechanics symposium, 28 June–1 July, American

  27. Hu D, Li J, Zhou H, Lu J, Ma D, Zhang F (2021) Gas permeability evolution of granite under confining pressure unloading tests. Eur J Environ Civ En 25(10):1915–1928. https://doi.org/10.1080/19648189.2019.1610073

    Article  Google Scholar 

  28. Huang J, Safari R, Burns K, Geldmacher I, Mutlu U, McClure M, Jackson S (2014) Natural-hydraulic fracture interaction: microseismic observations and geomechanical predictions. In: Unconventional resources technology conference, 25–27 August, American. https://doi.org/10.15530/urtec-2014-1921503

  29. ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15(3):99–103

    Article  Google Scholar 

  30. Ji Y, Wanniarachchi WAM, Wu W (2020) Effect of fluid pressure heterogeneity on injection-induced fracture activation. Comput Geotech 123:103589. https://doi.org/10.1016/j.compgeo.2020.103589

    Article  Google Scholar 

  31. Ji Y, Wu W, Zhao Z (2019) Unloading-induced rock fracture activation and maximum seismic moment prediction. Eng Geol 262:105352. https://doi.org/10.1016/j.enggeo.2019.105352

    Article  Google Scholar 

  32. Ji Y, Wu W (2018) Overpressure-induced frictional slip of rock fractures. In: ISRM International symposium-10th Asian rock mechanics symposium, 29 October–3 November 2018, Singapore

  33. Jia Y, Wu W, Kong XZ (2020) Injection-induced slip heterogeneity on faults in shale reservoirs. Int J Rock Mech Min Sci 131:104363. https://doi.org/10.1016/j.ijrmms.2020.104363

    Article  Google Scholar 

  34. Jia Y, Ji Y, Wu W (2019) Fluid pressure heterogeneity in rock fractures and associated frictional slip. In: ARMA-CUPB geothermal international conference, 5–8 August, China

  35. Kohli AH, Zoback MD (2013) Frictional properties of shale reservoir rocks. J Geophys Res: Solid Earth 118(9):5109–5125. https://doi.org/10.1002/jgrb.50346

    Article  Google Scholar 

  36. Kumari WGP, Ranjith PG (2019) Sustainable development of enhanced geothermal systems based on geotechnical research—a review. Earth Sci Rev 199:102955. https://doi.org/10.1016/j.earscirev.2019.102955

    Article  Google Scholar 

  37. Kunal KS, Devendra NS, Ranjith PG (2016) Effect of sample size on the fluid flow through a single fractured granitoid. J Rock Mech Geotech Eng 8(3):329–340. https://doi.org/10.1016/j.jrmge.2015.12.004

    Article  Google Scholar 

  38. Kwiatek G, Saarno T, Ader T, Bluemle F, Bohnhoff M, Chendorain M et al (2019) Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Sci Adv 5(5):eaav7224. https://doi.org/10.1126/sciadv.aav7224

    Article  Google Scholar 

  39. Langenbruch C, Zoback MD (2016) How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Sci Adv 2(11):e1601542. https://doi.org/10.1126/sciadv.1601542

    Article  Google Scholar 

  40. Lin F, Ren F, Luan H et al (2016) Effectiveness analysis of water-sealing for underground LPG storage. Tunn Undergr Sp Technol 51:270–290. https://doi.org/10.1016/j.tust.2015.10.039

    Article  Google Scholar 

  41. Liu Z, Shao J, Zha W, Xie S, Bourbon X, Camps G (2020) Shear strength of interface between high-performance concrete and claystone in the context of a French radioactive waste repository project. Géotechnique 71(6):534–547. https://doi.org/10.1680/jgeot.19.P.098

    Article  Google Scholar 

  42. Marone C (1998) Laboratory-derived friction laws and their application to seismic faulting. Annu Rev Earth Pl Sci 26(1):643–696

    Article  Google Scholar 

  43. McGarr A, Bekins B, Burkardt N et al (2015) Coping with earthquakes induced by fluid injection. Science 347(6224):830–831. https://doi.org/10.1126/science.aaa0494

    Article  Google Scholar 

  44. Meng F, Wong LNY, Zhou H et al (2019) Shear rate effects on the post-peak shear behaviour and acoustic emission characteristics of artificially split granite joints. Rock Mech Rock Eng 52(7):2155–2174. https://doi.org/10.1007/s00603-018-1722-8

    Article  Google Scholar 

  45. Meng F, Zhou H, Wang Z, Zhang C, Li S, Zhang L, Kong L (2018) Characteristics of asperity damage and its influence on the shear behavior of granite joints. Rock Mech Rock Eng 51(2):429–449. https://doi.org/10.1007/s00603-017-1315-y

    Article  Google Scholar 

  46. Nemoto K, Moriya H, Niitsuma H, Tsuchiya N (2008) Mechanical and hydraulic coupling of injection-induced slip along pre-existing fractures. Geothermics 37(2):157–172. https://doi.org/10.1016/j.geothermics.2007.11.001

    Article  Google Scholar 

  47. Rathnaweera TD, Wu W, Ji Y, Ranjith PG (2020) Understanding injection-induced seismicity in enhanced geothermal systems: From the coupled thermo-hydro-mechanical-chemical process to anthropogenic earthquake prediction. Earth Sci Rev 205:103182. https://doi.org/10.1016/j.earscirev.2020.103182

    Article  Google Scholar 

  48. Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res: Solid Earth 88:10359–10370. https://doi.org/10.1029/JB088iB12p10359

    Article  Google Scholar 

  49. Rutqvist J (2012) The geomechanics of CO2 storage in deep sedimentary formations. Geotech Geol Eng 30(3):525–551. https://doi.org/10.1007/s10706-011-9491-0

    Article  Google Scholar 

  50. Rutqvist J, Rinaldi AP, Cappa F, Jeanne P, Mazzoldi A, Urpi L, Guglielmi Y, Vilarrasa V (2016) Fault activation and induced seismicity in geological carbon storage: lessons learned from recent modeling studies. J Rock Mech Geotech Eng 8(6):789–804. https://doi.org/10.1016/j.jrmge.2016.09.001

    Article  Google Scholar 

  51. Rutter E, Hackston A (2017) On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection. Philos Trans R Soc A 375(2103):20160001. https://doi.org/10.1098/rsta.2016.0001

    Article  Google Scholar 

  52. Sainoki A, Mitri HS (2014) Dynamic behaviour of mining-induced fault slip. Int J Rock Mech Min Sci 66:19–29. https://doi.org/10.1016/j.ijrmms.2013.12.003

    Article  Google Scholar 

  53. Samuelson J, Spiers CJ (2012) Fault friction and slip stability not affected by CO2 storage: evidence from short-term laboratory experiments on North Sea reservoir sandstones and caprocks. Int J Greenhouse Gas Control 11:S78–S90. https://doi.org/10.1016/j.ijggc.2012.09.018

    Article  Google Scholar 

  54. Scuderi MM, Collettini C (2018) Fluid injection and the mechanics of frictional stability of shale-bearing faults. J Geophys Res Solid Earth 123(10):8364–8384. https://doi.org/10.1029/2018JB016084

    Article  Google Scholar 

  55. Scuderi MM, Collettini C, Marone C (2017) Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault. Earth Planet Sci Lett 477:84–96. https://doi.org/10.1016/j.epsl.2017.08.009

    Article  Google Scholar 

  56. Shapiro SA (2015) Fluid-induced seismicity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  57. Troiano A, Di Giuseppe MG, Monetti A, Patella D, Troise C, De Natale G (2017) Fluid injection in enhanced geothermal systems: a study on the detectability of self-potential effects and on their correlation with induced seismicity. Geothermics 65:280–294. https://doi.org/10.1016/j.geothermics.2016.05.003

    Article  Google Scholar 

  58. Vilarrasa V, Carrera J (2015) Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc Natl Acad Sci USA 112(19):5938–5943. https://doi.org/10.1073/pnas.1413284112

    Article  Google Scholar 

  59. Wang L, Kwiatek G, Rybacki E, Bonnelye A, Bohnhoff M, Dresen G (2020) Laboratory study on fluid-induced fault slip behavior: the role of fluid pressurization rate. Geophys Res Lett 47(6):e2019GL086627. https://doi.org/10.1029/2019GL086627

    Article  Google Scholar 

  60. Wang S, Wang H, Xu W, Qian W (2019) Investigation on mechanical behaviour of dacite under loading and unloading conditions. Géotechnique Lett 9(2):130–135. https://doi.org/10.1680/jgele.18.00193

    Article  Google Scholar 

  61. Wang T, Yang C, Ma H et al (2015) Safety evaluation of gas storage caverns located close to a tectonic fault. J Nat Gas Sci Eng 23:281–293. https://doi.org/10.1016/j.jngse.2015.02.005

    Article  Google Scholar 

  62. Weingarten M, Ge S, Godt JW, Bekins BA, Rubinstein JL (2015) High-rate injection is associated with the increase in US mid-continent seismicity. Science 348(6241):1336–1340. https://doi.org/10.1126/science.aab1345

    Article  Google Scholar 

  63. Ye Z, Ghassemi A (2018) Injection-induced shear slip and permeability enhancement in granite fractures. J Geophys Res Solid Earth 123(10):9009–9032. https://doi.org/10.1029/2018JB016045

    Article  Google Scholar 

  64. Ye Z, Ghassemi A (2019) Injection-induced propagation and coalescence of preexisting fractures in granite under triaxial stress. J Geophys Res Solid Earth 124(8):7806–7821. https://doi.org/10.1029/2019JB017400

    Article  Google Scholar 

  65. Zhang Q, Li X, Bai B et al (2019) Development of a direct-shear apparatus coupling with high pore pressure and elevated temperatures. Rock Mech Rock Eng 52(9):3475–3484. https://doi.org/10.1007/s00603-019-1735-y

    Article  Google Scholar 

  66. Zhang F, Zhao J, Hu D, Skoczylas F, Shao J (2018) Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mech Rock Eng 51(3):677–694. https://doi.org/10.1007/s00603-017-1350-8

    Article  Google Scholar 

  67. Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci USA 109(26):10164–10168. https://doi.org/10.1073/pnas.1202473109

    Article  Google Scholar 

  68. Zoback MD, Kohli AH (2019) Unconventional reservoir geomechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

The financial support by the National Key Research and Development Program of China (Grant No. 2022YFE0137200), the National Natural Science Foundation of China (Grant Nos. 52179114 and 42277186), and the Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes (Grant No. CKSF2023310/YT) for this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Zhang, Y., Zhu, J. et al. Laboratory investigations on activation characteristics of fracture induced by fluid injection and unloading of normal stress. Acta Geotech. 19, 1667–1685 (2024). https://doi.org/10.1007/s11440-023-02006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-02006-z

Keywords

Navigation