Skip to main content

Advertisement

Log in

A conceptual modeling on the behavior of strain localization for brittle rocks

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper captures the frequently encountered strain localization of brittle rocks in laboratory compression experiments under moderate confining pressures generally ranging from 10 to 60 MPa. The plastic volumetric strains are related to particle dislocations in shear bands strongly constrained by relatively undeformed neighboring materials. Accordingly, the dilatant behavior of shear bands, analogous to a rock joint shearing, is predicted by introducing a multiple-asperity joints model. By imposing the model, the dislocation of grain particles in bands is abstracted by an uneven interface shear to reflect admitted volumetric strain behavior. It also highlights key issues associated with the bands, i.e., the width, the boundary conditions and non-uniform grain sizes within the bands. To tackle these problems, appropriate hypotheses are further made to simplify analytical procedures. The solution can quantify triaxial stress–strain relations with the least number of model parameters. A comparison between predictions and published experimental data is claimed to be satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

Some or all data, models or code generated or used during the study are available from the corresponding author by request (the data in the graph and the code of calculation).

Abbreviations

H :

Height of prismatic specimen

D :

Diameter of cylinder specimen

W :

Equivalent width of cylinder sample

ε :

Global apparent strain

ε e :

Elastic strain

ε p :

Permanent strain

E :

Elasticity modulus

ν:

Poisson’s ratio

σ 1 :

Major principal stresses

σ 3 :

Minor principal stresses

W s :

Localized width of shear bands

R :

Radius of grains

r :

Radius of a cylindrical cavity.

L :

Total length of the primary joint profile

θ :

Inclination of asperities

l i :

Chord length of the ith asperities

l min :

Minimum chord length of asperity

l max :

Maximum chord length of asperity

n :

Total number of asperities

\(\xi_{i}^{cr}\) :

Critical shear displacement for ith asperity

c :

Cohesion of rocks

φ :

Internal friction angle of rocks

φ b :

Base friction angle of rocks

K :

Normal spring stiffness

ξ :

Displacement of the interface

l cr :

Critical chord length of failed asperities

τ i ,int :

Local shear strength of intact asperities

m :

Number of failed asperities

τ i ,res :

Local shear strength of failed asperities

φ r :

Residual frictional angle of rocks

A :

Nominal area of the joint

τ :

Global shear strength across the total joint

i cr :

Index of the biggest failed asperity

ψ :

Dilatancy angle of rocks

ω :

The angle of shear band with respect to the horizontal

References

  1. Arthur JRF, Dunstan T, Al-Ani Q, Assadi A (1977) Plastic deformation and failure of granular media. Géotechnique 27(1):53–74

    Article  Google Scholar 

  2. Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10(1):1–54

    Article  Google Scholar 

  3. Boresi AP (1965) Elasticity in engineering mechanics. Prentice Hall Inc., Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  4. Bésuelle P, Desrues J, Raynaud S (2000) Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int J Rock Mech Min Sci 37(8):1223–1237

    Article  Google Scholar 

  5. De Borst R, Mühlhaus HB (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Meth Eng 35(5):521–539

    Article  MATH  Google Scholar 

  6. Desrues J (1984) La localisation de la déformation dans les matériaux granulaires. Université Joseph-Fourier-Grenoble I, La Tronche

    Google Scholar 

  7. Divakar MP, Fafitis A (1992) Micromechanics-based constitutive model for interface shear. J Eng Mech 118(7):1317–1337

    Google Scholar 

  8. Donath FA, JrLS F (1971) Dependence of strain-rate effects on deformation mechanism and rock type. J Geol 79(3):347–371

    Article  Google Scholar 

  9. Gao G, Meguid MA, Chouinard LE (2020) On the role of pre-existing discontinuities on the micromechanical behavior of confined rock samples: a numerical study. Acta Geotech 15(12):3483–3510

    Article  Google Scholar 

  10. Haque A, Kodikara J (2012) A simplified analytical model for predicting the shear behaviour of regular triangular rock/concrete joints under constant normal stiffness. Géotechnique 62(2):171–176

    Article  Google Scholar 

  11. He C, Okubo S, Nishimatsu Y (1990) A study on the class II behavior of rock. Rock Mech Rock Eng 23(4):262–273

    Article  Google Scholar 

  12. Hill R (1958) A general theory of uniqueness and stability in elastic-plastic models. J Mech Phys Solids 6(3):236–249

    Article  MATH  Google Scholar 

  13. Hobbs BE, Mühlhaus HB, Ord A (1990) Instability, softening and localization of deformation. Geol Soc Lond Spec Publ 54(1):143–165

    Article  Google Scholar 

  14. Hudson JA, Crouch SL, Fairhurst C (1972) Soft, stiff and servo-controlled testing machines: a review with reference to rock failure. Eng Geol 6(3):155–189

    Article  Google Scholar 

  15. Indraratna B, Haque A (2000) Shear behaviour of rock joints. CRC Press, Boca Raton

    Google Scholar 

  16. Indraratna B, Oliveira DA, Brown ET, De Assis AP (2010) Effect of soil–infilled joints on the stability of rock wedges formed in a tunnel roof. Int J Rock Mech Min Sci 47(5):739–751

    Article  Google Scholar 

  17. Johnston IW, Lam TSK (1989) Shear behavior of regular triangular concrete/rock joints-analysis. J Geotech Geoenviron Eng 115(5):711–727

    Article  Google Scholar 

  18. Johnston IW, Lam TSK, Williams AF (1987) Constant normal stiffness direct shear testing for socketed pile design in weak rock. Géotechnique 37(1):83–89

    Article  Google Scholar 

  19. Kolymbas D (2007) Incompatible deformation in rock mechanics. Acta Geotech 2(1):33–40

    Article  Google Scholar 

  20. Kolymbas D (2009) Kinematics of shear bands. Acta Geotech 4(4):315–318

    Article  Google Scholar 

  21. Ladanyi B, Archambault G (1970) Simulation of shear behaviour of a jointed rock mass. Rock Mechanics, W. H. Somerton, ed., Proc. 11th U.S. Symp. On Rock Mechanics, Berkeley, Calif: 105–125

  22. Li C (1995) Micromechanics modelling for stress-strain behaviour of brittle rocks. Int J Numer Anal Meth Geomech 19(5):331–344

    Article  MATH  Google Scholar 

  23. Li X, Konietzky H, Li X, Wang Y (2019) Failure pattern of brittle rock governed by initial microcrack characteristics. Acta Geotech 14(5):1437–1457

    Article  Google Scholar 

  24. Lobo-Guerrero S, Vallejo LE (2005) DEM analysis of crushing around driven piles in granular materials. Géotechnique 55:617–623

    Article  Google Scholar 

  25. Mahmutoğlu Y (2006) The effects of strain rate and saturation on a micro-cracked marble. Eng Geol 82(3):137–144

    Article  Google Scholar 

  26. Masuda K (2001) Effects of water on rock strength in a brittle regime. J Struct Geol 23(11):1653–1657

    Article  Google Scholar 

  27. Menéndez B, Zhu W, Wong TF (1996) Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. J Struct Geol 18(1):1–16

    Article  Google Scholar 

  28. Mühlhaus HB, Vardoulakis I (1987) The thickness of shear bands in granular materials. Géotechnique 37(3):271–283

    Article  Google Scholar 

  29. Patton FD (1966) Multiple modes of shear failure in rock. In: Procced. 1st Cong. Int. Soc. Rock Mech., Lisbon 1, 509–513

  30. Peng SY, Ng CWW, Zheng G (2014) The dilatant behaviour of sand–pile interface subjected to loading and stress relief. Acta Geotech 9(3):425–437

    Article  Google Scholar 

  31. Pettijohn FJ, Potter PE, Siever R (2012) Sand and sandstone. Springer, Berlin

    Google Scholar 

  32. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394

    Article  Google Scholar 

  33. Saeb S, Amadei B (2000) Modelling rock joints under shear and normal loading. Int J Rock Mech Min Sci 29(3):267–278

    Article  Google Scholar 

  34. Seidel JP, Haberfield CM (2002) A theoretical model for rock joints subjected to constant normal stiffness direct shear. Int J Rock Mech Min Sci 39(5):539–553

    Article  Google Scholar 

  35. Skinas CA, Bandis SC, Demiris CA (1990) Experimental investigations and modelling of rock joint behaviour under constant stiffness. Proc Int Conf Rock Joints Loen 301–308

  36. Sokolovskii VV (1965) Statics of granular media. Pergamon Press, New York

    Google Scholar 

  37. Stow DAV (2005) Sedimentary rocks in the field: a color guid. Gulf Professional Publishing, Houston

    Book  Google Scholar 

  38. Trivedi A (2010) Strength and dilatancy of jointed rocks with granular fill. Acta Geotech 5(1):15–31

    Article  Google Scholar 

  39. Vardoulakis I (1980) Shear band inclination and shear modulus of sand in biaxial tests. Int J Numer Anal Meth Geomech 4(2):103–119

    Article  MATH  Google Scholar 

  40. Vermeer PA (1990) The orientation of shear bands in biaxial tests. Géotechnique 40(2):223–236

    Article  Google Scholar 

  41. Wernick E (1978) Skin friction of cylindrical anchors in noncohesive soils. In: Proceedings symposium on soil reinforcing and stabilising techniques in engineering practice. Sydney, Australia, 201–219

  42. Wong TF, Baud P (2012) The brittle-ductile transition in porous rock: a review. J Struct Geol 44:25–53

    Article  Google Scholar 

  43. Yang SQ, Jiang YZ, Xu WY, Chen XQ (2008) Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct 45(17):4796–4819

    Article  MATH  Google Scholar 

  44. Yang SQ, Ranjith PG, Gui Y (2015) Experimental study of mechanical behavior and X-ray micro CT observations of sandstone under conventional triaxial compression. Geotech Test J 38(2):179–197

    Article  Google Scholar 

  45. Zhang P, Li N, Li XB, Nordlund E (2009) Compressive failure model for brittle rocks by shear faulting and its evolution of strength components. Int J Rock Mech Min Sci 46(5):830–841

    Article  Google Scholar 

  46. Zhao Y, Gao Y, Wu S, Chen L, Zhang C (2021) Experimental and numerical study of failure characteristics of brittle rocks with single internal 3D open-type flaw. Acta Geotech 16:3087–3113

    Article  Google Scholar 

  47. Zhao H, Xiao Y, Zhao MH, Yin PB (2017) On behavior of load transfer for drilled shafts embedded in weak rocks. Comput Geotech 85:177–185

    Article  Google Scholar 

  48. Zhao H, Zhou S, Zhao MH, Shi C (2018) Statistical micromechanics-based modeling for low-porosity rocks under conventional triaxial compression. Int J Geomech 18(5):04018019

    Article  Google Scholar 

  49. Zhou GL, Tham GL, Lee PKK, Tsui Y (2001) A phenomenological constitutive model for rocks with shear failure mode. Int J Numer Anal Meth Geomech 25(4):391–414

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research is a part of the work carried out by grants from the National Natural Science Foundation of China (Nos. 51978255 and 52108317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhe Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Hou, J., Peng, W. et al. A conceptual modeling on the behavior of strain localization for brittle rocks. Acta Geotech. 17, 5239–5251 (2022). https://doi.org/10.1007/s11440-022-01652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01652-z

Keywords

Navigation