Skip to main content
Log in

A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack’s behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p–alpha (pα) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashby MF, Sammis CG (1990) The damage mechanics of brittle solids in compression. Pure appl Geophys 133(3):489–521. doi:10.1007/BF00878002

    Article  Google Scholar 

  • Atkinson BK (1987) Fracture mechanics of rock. Academic Press, London

    Google Scholar 

  • Bhatt JJ, Carroll MM, Schatz JF (1975) A spherical model calculation for volumetric response of porous rocks. J Appl Mech 42(2):363–368. doi:10.1115/1.3423582

    Article  Google Scholar 

  • Bosman JD, Malan DF, Drescher K (2000) Time-dependent tunnel deformation at Hartebeestfontein Mine. J S Afr Inst Min Metall 100(6):333–340

    Google Scholar 

  • Brace WF, Paulding BW, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953. doi:10.1029/JZ071i016p03939

    Article  Google Scholar 

  • Bridgman PW (1949) Volume changes in the plastic stages of simple compression. J Appl Phys 20:1241–1251. doi:10.1063/1.1698316

    Article  Google Scholar 

  • Carroll MM, Holt AC (1972) Static and dynamic pore collapse relations for ductile porous materials. J Appl Phys 43(4):1626–1635. doi:10.1063/1.1661372

    Article  Google Scholar 

  • Cogan J (1976) Triaxial creep tests of Opohonga limestone and Ophir shale. Int J Rock Mech Min Sci Geomech Abstr 13(1):1–10. doi:10.1016/0148-9062(76)90221-7

    Article  Google Scholar 

  • Cook NGW (1970) An experiment proving that dilatancy is a pervasive volumetric property of brittle rock loaded to failure. Rock Mech 2(4):181–188. doi:10.1007/BF01245573

    Article  Google Scholar 

  • Costin LS (1983) A microcrack model for the deformation and failure of brittle rock. J Geophys Res 88(B11):9485–9492. doi:10.1029/JB088iB11p09485

    Article  Google Scholar 

  • Cristescu ND (2002) New trends in rock mechanics. Int Appl Mech 38(1):1–22. doi:10.1023/A:1015364607665

    Article  Google Scholar 

  • Das S, Scholz CH (1981) Theory of time-dependent rupture in the Earth. J Geophys Res 86(B7):6039–6051. doi:10.1029/JB086iB07p06039

    Article  Google Scholar 

  • Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 41(5):785–812. doi:10.1016/j.ijrmms.2004.02.003

    Article  Google Scholar 

  • Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of westerly granite. Int J Rock Mech Min Sci 37(99):285–296. doi:10.1016/S1365-1609(99)00106-9

    Article  Google Scholar 

  • Han LJ, He YN, Zhang HQ (2016) Study of rock splitting failure based on Griffith strength theory. Int J Rock Mech Min Sci 83:116–121. doi:10.1016/j.ijrmms.2015.12.011

    Google Scholar 

  • Hertel ES, Kerley GI (1998) CTH reference manual: The equation of state package, Sandia National Laboratories, SAND98-0947

  • Huang H-X, Fan P-X, Li J, Wang M-Y, Rong X-L (2016) A theoretical explanation for rock core disking in triaxial unloading test by considering local tensile stress. Acta Geophys 64(5):1430–1445. doi:10.1515/acgeo-2016-0068

    Article  Google Scholar 

  • Kachanov LM (1986) Introduction to the continuum damage mechanics. Springer-Science+Business Media, Dordrecht

    Book  Google Scholar 

  • Klein E, Reuschle T (2003) A model for the mechanical behaviour of Bent-heim sandstone in the brittle regime. Pure Appl Geophys 160:833–849. doi:10.1007/978-3-0348-8083-1_3

    Article  Google Scholar 

  • Klein E, Reuschle T (2004) A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime. Int J Rock Mech Min Sci 41(6):975–986. doi:10.1016/j.ijrmms.2004.03.003

    Article  Google Scholar 

  • Martin CD, Read RS (1992) Strength of massive granite around underground excavation. In: Proc. 16th Canadian Rock Mechanics Symposium, Sudbury, pp 1–11

  • Paterson MS, Wong TF (2005) Experimental rock deformation–the brittle field. Springer, Berlin

    Google Scholar 

  • Qi C-Z, Wang M-Y, Bai J-P, Li K-R (2014) Mechanism underlying dynamic size effect on rock mass strength. Int J Impact Eng 68:1–7. doi:10.1016/j.ijimpeng.2014.01.005

    Article  Google Scholar 

  • Qi C-Z, Wang M-Y, Bai J-P, Wei X-K, Wang H-S (2016) Investigation into size and strain rate effects on the strength of rock-like materials. Int J Rock Mech Min Sci 86:132–140. doi:10.1016/j.ijrmms.2016.04.008

    Google Scholar 

  • Qian Q-H, Zhou X-P (2011) Non-euclidean continuum model of the zonal disintegration of surrounding rocks around a deep circular tunnel in a non-hydrostatic pressure state. J Min Sci 47(1):37–46. doi:10.1134/S1062739147010059

    Article  Google Scholar 

  • Read RS (2004) 20 years of excavation response studies at AECL’s underground research laboratory. Int J Rock Mech Min Sci 41(8):1251–1275. doi:10.1016/j.ijrmms.2004.09.012

    Article  Google Scholar 

  • Scholz CH (1968) Microfracturing and the inelastic deformation of rock in compression. J Geophys Res 73(4):1417–1432. doi:10.1029/JB073i004p01417

    Article  Google Scholar 

  • Scholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181(4102):803–810. doi:10.1126/science.181.4102.803

    Article  Google Scholar 

  • Seaman L, Curran DR, Shockey DA (1976) Computational models for ductile and brittle fracture. J Appl Phys 47(11):4814–4826. doi:10.1063/1.322523

    Article  Google Scholar 

  • Szczepanik Z, Milne D, Kostakis K, Eberhardt E (2003) Long term laboratory strength tests in hard rock. 10th ISRM Congress “Technology Roadmap for Rock Mechanics”. Sandton, South Africa, pp 1179–1184

    Google Scholar 

  • Tan TK (1982) The mechanical problems for the long-term stability of underground galleries. Chin J Rock Mech Eng 1(1):1–20

    Google Scholar 

  • Tan TK, Kang WF (1983) Time dependent dilatancy prior to rock failure and earthquakes. In: Proc. 5th ISRM Congress, Melbourne

  • Tan T-K, Shi Z-Q, Yu Z-H, Wu X-Y (1989) Dilatancy, creep and relaxation of brittle rocks measured with the 8000 kN multipurpose triaxial apparatus. Phys Earth Planet Inter 55(3–4):335–352. doi:10.1016/0031-9201(89)90081-2

    Google Scholar 

  • Tapponnier P, Brace WF, Tapponnier P, Brace WF (1976) Development of stress-induced microcracks in westerly granite. Int J Rock Mech Min Sci Geomech Abstr 13:103–112. doi:10.1016/0148-9062(76)91937-9

    Article  Google Scholar 

  • Vásárhelyi B, Bobet A (2000) Modeling of crack initiation, propagation and coalescence in uniaxial compression. Rock Mech Rock Eng 33(2):119–139. doi:10.1007/s006030050038

    Article  Google Scholar 

  • Wiederhorn SM, Freiman SW, Fuller Jr ER, Simmons CJ (1982) Effects of water and other dielectrics on crack growth. J Mater Sci 17:3460–3478. doi:10.1007/BF00752191

    Article  Google Scholar 

  • Yang S-Q, Jing H-W, Wang S-Y (2012) Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng 45:583–606. doi:10.1007/s00603-011-0208-8

    Article  Google Scholar 

  • Zhang Y, Shao J-F, Xu W-Y, Zhao H-B, Wang W (2015) Experimental and numerical investigations on strength and deformation behavior of cataclastic sandstone. Rock Mech Rock Eng 48(3):1083–1096. doi:10.1007/s00603-014-0623-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Basic Research Program of China (973 Program, No. 2013CB036005) and the National Natural Science Foundation of China (Grant No. 51527810, No. 51679249, No. 51309233), which is greatly appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, H. & Wang, M. A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model. Acta Geophys. 65, 55–64 (2017). https://doi.org/10.1007/s11600-017-0006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0006-0

Keywords

Navigation