Skip to main content
Log in

Self-repair of cracks and defects in clay: a review of evidence, mechanisms, theories and nomenclature

  • Review Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Clay minerals and clayey soils have been extensively researched over the last century leading to a rich and still evolving corpus of knowledge on clay chemistry, microstructure and macroscopic behaviour. Clay has the ability, under certain conditions, to spontaneously repair its cracks. However, despite ample evidence, clay self-repair remains understudied and under-theorised. For example, the majority of experimental studies discussing clay self-repair infer its existence from changes to macroscopic properties assumed to be caused by self-repair, and only a small number of studies have attempted to observe self-repair directly. This paper reviews the literature on clay self-repair. First, it situates clay self-repair within the broader context of self-repairing material. Next, autogenous self-repair of clay, under wet-dry cycles, freeze–thaw cycles and deep-ground consolidation, is presented focusing on evidence, driving mechanisms and key variables of influence. Next, theories of clay self-repair proposed in the literature are discussed, highlighting their scope and limitations, as well as the extent to which they have been validated by experimental observations. Key gaps in current knowledge of clay self-repair are highlighted and ways in which they can be addressed in future research are proposed. Finally, a nomenclature distinguishing between different kinds of clay self-repair is proposed based on eight different attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. No clear-cut distinction exists between fracturing and fissuring; however, in this paper, we take fracturing to refer to a pattern of large and spaced-out cracks, while fissuring indicates a denser configuration of smaller and narrower cracks; we will use the term “cracking” when referring generically to both fracturing and fissuring.

  2. ‘Clay minerals’ are chemically defined compounds belonging to one of several clay mineral groups such as kaolinite, illite, vermiculite and smectite, which are found in soils; ‘clayey soils’ are defined differently by different soil classification systems but, in this paper, we generally understand them to be soil containing significant amounts of clay minerals; ‘clay materials’ are industrially manufactured/processed substances that contain refined forms of clay minerals for specific applications such as china clay (kaolinite) or bentonite for waste barrier systems (montmorillonite).

References

  1. AbuAl-Rub RK, Darabi MK, Little DN, Masad EA (2010) A micro-damage healing model that improves prediction of fatigue life in asphalt mixes. Int J Eng Sci 48(11):966–990. https://doi.org/10.1016/j.ijengsci.2010.09.016

    Article  Google Scholar 

  2. Adiat KAN, Akinlalu AA, Adegoroye AA (2017) Evaluation of road failure vulnerability section through integrated geophysical and geotechnical studies. NRIAG J Astron Geophys 6(1):244–255. https://doi.org/10.1016/j.nrjag.2017.04.006

    Article  Google Scholar 

  3. Ahmadi M, Taleghani AD, Sayers CM (2014) Direction dependence of fracture compliance induced by slickensides. Geophysics 79(4):C91–C96

    Article  Google Scholar 

  4. Ajayi T, Gomes JS, Bera A (2019) A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet Sci 16(5):1028–1063. https://doi.org/10.1007/s12182-019-0340-8

    Article  Google Scholar 

  5. Albrecht BA, Benson CH (2001) Effect of desiccation on compacted natural clays. J Geotech Geoenviron Eng 127(January):67–75

    Article  Google Scholar 

  6. Aldaeef AA, Rayhani MT (2015) Hydraulic performance of compacted clay liners under simulated daily thermal cycles. J Environ Manag 162:171–178. https://doi.org/10.1016/j.jenvman.2015.07.036

    Article  Google Scholar 

  7. Al-Tabbaa A, Litina C, Giannaros P, Kanellopoulos A, Souza L (2019) First UK field application and performance of microcapsule-based self-healing concrete. Constr Build Mater 208(2019):669–685. https://doi.org/10.1016/j.conbuildmat.2019.02.178

    Article  Google Scholar 

  8. Arnold S et al (2020) Event-based deep drainage and percolation dynamics in vertosols and chromosols. Hydrol Process 34(2):370–386. https://doi.org/10.1002/hyp.13592

    Article  Google Scholar 

  9. Arson C (2020) Micro-macro mechanics of damage and healing in rocks. Open Geomech 1:1–41

    Article  Google Scholar 

  10. Azad FM, Rowe RK, El-Zein A, Airey DW (2011) Laboratory investigation of thermally induced desiccation of GCLs in double composite liner systems. Geotext Geomembranes 29(6):534–543. https://doi.org/10.1016/j.geotexmem.2011.07.001

    Article  Google Scholar 

  11. Bakker DM, Barker TM (1998) Soil structure assessment and 3-dimensional visualisation of a vertosol under controlled traffic. Aust J Soil Res 36(4):603–620. https://doi.org/10.1071/S97094

    Article  Google Scholar 

  12. Bastiaens W, Bernier F, Li XL (2007) SELFRAC: Experiments and conclusions on fracturing, self-healing and self-sealing processes in clays. Phys Chem Earth 32(8–14):600–615. https://doi.org/10.1016/j.pce.2006.04.026

    Article  Google Scholar 

  13. Benson CH, Meer SR (2009) Relative abundance of monovalent and divalent cations and the impact of desiccation on geosynthetic clay liners. J Geotech Geoenviron Eng 135(3):349–358. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(349)

    Article  Google Scholar 

  14. Benson CH, Othman MA (1993) Hydraulic conductivity of compacted clay frozen and thawed in situ. J Geotech Eng 119(2):276–294

    Article  Google Scholar 

  15. Bhreasail ÁN et al (2012) In-situ observation of cracks in frozen soil using synchrotron tomography. Permafr Periglac Process 23(May):170–176. https://doi.org/10.1002/ppp.1737

    Article  Google Scholar 

  16. Bleay SM, Loader CB, Hawyes VJ, Humberstone L, Curtis PT (2001) A smart repair system for polymer matrix composites. Compos Part A Appl Sci Manuf 32(12):1767–1776. https://doi.org/10.1016/S1359-835X(01)00020-3

    Article  Google Scholar 

  17. Blümling P, Bernier F, Lebon P, Derek Martin C (2007) The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Phys Chem Earth 32(8–14):588–599. https://doi.org/10.1016/j.pce.2006.04.034

    Article  Google Scholar 

  18. Bo MW, Fabius M, Fabius K (2008) Impact of global warming on stability of natural slopes. In: IVth Canadian conference on geohazards: from causes to management, pp 112–115

  19. Boynton SS, Daniel DE (1985) Hydraulic conductivity tests on compacted clay. J Geotech Eng 111(4):465–478. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(465)

    Article  Google Scholar 

  20. Bronswijk JJB (1988) Effect of swelling and shrinkage on the calculation of water balance and water transport in clay soils. Agric Water Manag 14(1–4):185–193. https://doi.org/10.1016/0378-3774(88)90073-X

    Article  Google Scholar 

  21. Burton GJ, Pineda JA, Sheng D, Airey D (2015) Microstructural changes of an undisturbed, reconstituted and compacted high plasticity clay subjected to wetting and drying. Eng Geol 193:363–373. https://doi.org/10.1016/j.enggeo.2015.05.010

    Article  Google Scholar 

  22. Cardoso R, Pires I, Duarte SOD, Monteiro GA (2018) Effects of clay’s chemical interactions on biocementation. Appl Clay Sci 156:96–103. https://doi.org/10.1016/j.clay.2018.01.035

    Article  Google Scholar 

  23. Chai JC, Prongmanee N (2020) Barrier properties of a geosynthetic clay liner using polymerized sodium bentonite. Geotext Geomembr 48(3):392–399. https://doi.org/10.1016/j.geotexmem.2019.12.010

    Article  Google Scholar 

  24. Chai JC, Sari K, Long S, Cai Y (2016) Predicting self-healing ratio of GCL with a damage hole. Geotext Geomembr 44(5):761–769. https://doi.org/10.1016/j.geotexmem.2016.05.010

    Article  Google Scholar 

  25. Cheng Q, Tang CS, Zeng H, Zhu C, An N, Shi B (2019) Effects of microstructure on desiccation cracking of a compacted soil. Eng Geol 265(September):2020. https://doi.org/10.1016/j.enggeo.2019.105418

    Article  Google Scholar 

  26. Chiarelli AS, Shao JF, Hoteit N (2003) Modeling of elastoplastic damage behavior of a claystone. Int J Plast 19(1):23–45. https://doi.org/10.1016/S0749-6419(01)00017-1

    Article  MATH  Google Scholar 

  27. Cripps J, Parmar K (2015) “Investigations into the self-healing of desiccation cracks in compacted clays”, in engineering geology for society and territory volume 5: urban geology. Sustain Plan Landsc Exploit 5:1327–1331

    Google Scholar 

  28. Dai Q, Wang Z, Mohd Hasan MR (2013) Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests. Constr Build Mater 49:729–737. https://doi.org/10.1016/j.conbuildmat.2013.08.089

    Article  Google Scholar 

  29. Daniel D (1991) Material, results of laboratory tests on a geotextile/bentonite liner. In: Geosynthetics, conference, Atlanta, Georgia, 1991, p. Volume 2

  30. Danish A, Mosaberpanah MA, Salim MU (2020) Past and present techniques of self-healing in cementitious materials: a critical review on efficiency of implemented treatments. J Mater Res Technol 9(3):6883–6899. https://doi.org/10.1016/j.jmrt.2020.04.053

    Article  Google Scholar 

  31. Darabi MK, Abu Al-Rub RK, Masad EA, Little DN (2013) Constitutive modeling of fatigue damage response of asphalt concrete materials with consideration of micro-damage healing. Int J Solids Struct 50(19):2901–2913. https://doi.org/10.1016/j.ijsolstr.2013.05.007

    Article  Google Scholar 

  32. De Camillis M, Di Emidio G, Bezuijen A, Verastegui Flores D, Van Stappen J, Cnudde V (2017) Effect of wet-dry cycles on polymer treated bentonite in seawater: swelling ability, hydraulic conductivity and crack analysis. Appl Clay Sci 142:52–59. https://doi.org/10.1016/j.clay.2016.11.011

    Article  Google Scholar 

  33. De Camillis M, Di Emidio G, Bezuijen A, Verástegui-Flores RD (2016) Hydraulic conductivity and swelling ability of a polymer modified bentonite subjected to wet–dry cycles in seawater. Geotext Geomembr 44(5):739–747. https://doi.org/10.1016/j.geotexmem.2016.05.007

    Article  Google Scholar 

  34. de Freitas CR (1994) Theories on progressive desiccation and desertification: reassessing the drought hazard. Weather Clim. 14(2):11. https://doi.org/10.2307/44279869

    Article  Google Scholar 

  35. Dejong JT et al (2013) “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Bio Chem Mech Process Geotech Eng Geotech Symp Print 2013(4):143–157. https://doi.org/10.1680/bcmpge.60531.014

    Article  Google Scholar 

  36. Didier G, Al Nassar M, Plagne V, Cazaux D (2000) Evaluation of self-healing ability of geosynthetic clay liners. In: ISRM international symposium, 2000, p ISRM-IS-2000-165

  37. Dlapa P et al (2020) The impact of land-use on the hierarchical pore size loamy soils. Water 12:339

    Article  Google Scholar 

  38. Di Donna A, Charrier P, Salager S, Bésuelle P (2019) Self-sealing capacity of argillite samples. E3S Web Conf 92:03005. https://doi.org/10.1051/e3sconf/20199203005.

  39. Dormieux L, Kondo D, Ulm F-J (2006) Microporomechanics

  40. Duraismay Y, Airey DW (2014) Resilient foundations: building in repair capability. In: Resilient geotechnics, AGS Sydney chapter symposium, pp 66–75

  41. Ehsan Khan MB, Shen L, Dias-da-Costa D (2020) Characterisation of autogenous healing in cracked mortars under marine water exposure. Mag Concr Res. https://doi.org/10.1680/jmacr.20.00162

    Article  Google Scholar 

  42. Eigenbrod KD (2003) Self-healing in fractured fine-grained soils. Can Geotech J 449:435–449. https://doi.org/10.1139/T02-110

    Article  Google Scholar 

  43. Esgandani GA, El-Zein A (2020) Thermodynamic based model for coupled elastoplastic damage-healing behaviour of unsaturated geomaterials. Mech Mater 145:103395. https://doi.org/10.1016/j.mechmat.2020.103395

    Article  Google Scholar 

  44. Estabragh AR, Khosravi F, Javadi AA (2016) Effect of thermal history on the properties of bentonite. Environ Earth Sci 75(8):1–10. https://doi.org/10.1007/s12665-016-5416-9

    Article  Google Scholar 

  45. Estabragh AR, Parsaei B, Javadi AA (2015) Laboratory investigation of the effect of cyclic wetting and drying on the behaviour of an expansive soil. Soils Found 55(2):304–314. https://doi.org/10.1016/j.sandf.2015.02.007

    Article  Google Scholar 

  46. Favre F, Boivin P, Wopereis MCS (1997) Water movement and soil swelling in a dry, cracked vertisol. Geoderma 78(1–2):113–123. https://doi.org/10.1016/S0016-7061(97)00030-X

    Article  Google Scholar 

  47. Ferguson JB, Schultz BF, Rohatgi PK (2014) Self-healing metals and metal matrix composites. Jom 66(6):866–871. https://doi.org/10.1007/s11837-014-0912-4

    Article  Google Scholar 

  48. Gao Y, El-Zein A, Airey DW, Proust G (2020) Autogenous sealing of a cavity in bentonite clay: observation by X-ray computerized tomography. Geotech Lett 12:1–3

    Google Scholar 

  49. Gens A (2010) Soil-environment interactions in geotechnical engineering. Geotechnique 60(1):3–74. https://doi.org/10.1680/geot.9.P.109

    Article  Google Scholar 

  50. Ghavam-Nasiri A, El-Zein A, Airey D, Rowe RK, Bouazza A (2020) Thermal desiccation of geosynthetic clay liners under brine pond conditions. Geosynth Int 27(6):593–605. https://doi.org/10.1680/jgein.20.00020

    Article  Google Scholar 

  51. Giot R, Auvray C, Talandier J (2019) Self-sealing of claystone under X-ray nanotomography. Geol Soc Lond Spec Publ 482(1):213–223

    Article  Google Scholar 

  52. Grant CD, Blackmore AV (1991) Self-mulching behaviour in clay soils: Its definition and measurement. Aust J Soil Res 29(2):155–173. https://doi.org/10.1071/SR9910155

    Article  Google Scholar 

  53. Greve A, Andersen MS, Acworth RI (2010) Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil. J Hydrol 393(1–2):105–113. https://doi.org/10.1016/j.jhydrol.2010.03.007

    Article  Google Scholar 

  54. He J, Wang Y, Li Y, Ruan XC (2015) Effects of leachate infiltration and desiccation cracks on hydraulic conductivity of compacted clay. Water Sci Eng 8(2):151–157. https://doi.org/10.1016/j.wse.2015.04.004

    Article  Google Scholar 

  55. Hong G, Song C, Choi S (2020) Autogenous healing of early-age cracks in cementitious materials by superabsorbent polymers. Materials. https://doi.org/10.3390/ma13030690

    Article  Google Scholar 

  56. Huang Z, Wei B, Zhang L, Chen W, Peng Z (2019) Surface crack development rules and shear strength of compacted expansive soil due to dry-wet cycles. Geotech Geol Eng 37(4):2647–2657. https://doi.org/10.1007/s10706-018-00784-y

    Article  Google Scholar 

  57. Huang L, Zheng F, Deng Q, Thi QH, Wong LW, Cai Y (2020) In situ scanning transmission electron microscopy observations of fracture at the atomic scale. Phys Rev Lett 125:246102. https://doi.org/10.1103/PhysRevLett.125.246102

    Article  Google Scholar 

  58. Inoubli N, Raclot D, Moussa R, Habaieb H, Le Bissonnais Y (2016) Soil cracking effects on hydrological and erosive processes: a study case in Mediterranean cultivated vertisols. Hydrol Process 30(22):4154–4167. https://doi.org/10.1002/hyp.10928

    Article  Google Scholar 

  59. Ivanov V, Chu J, Stabnikov V, Li B (2015) Strengthening of soft marine clay using bioencapsulation. Mar Georesour Geotechnol 33(4):325–329. https://doi.org/10.1080/1064119X.2013.877107

    Article  Google Scholar 

  60. Jamalinia E, Vardon PJ, Steele-Dunne SC (2020) The impact of evaporation induced cracks and precipitation on temporal slope stability. Comput Geotech 122:103. https://doi.org/10.1016/j.compgeo.2020.103506

    Article  Google Scholar 

  61. Jefferson T, Javierre E, Freeman B, Zaoui A, Koenders E (2018) Research progress on numerical models for self-healing cementitious materials. Adv Mater Interfaces 5(1701378):1–19. https://doi.org/10.1002/admi.201701378

    Article  Google Scholar 

  62. Jia SP, Zhang LW, Wu BS, Yu HD, Shu JX (2018) A coupled hydro-mechanical creep damage model for clayey rock and its application to nuclear waste repository. Tunn Undergr Space Technol 74(January):230–246. https://doi.org/10.1016/j.tust.2018.01.026

    Article  Google Scholar 

  63. Jo HY, Benson CH, Shackelford CD, Lee JM, Edil TB (2005) Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. J Geotech Geoenviron Eng 131(4):405–417. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(405)

    Article  Google Scholar 

  64. Jobmann M, Wilsnack T, Voigt HD (2010) Investigation of damage-induced permeability of Opalinus clay. Int J Rock Mech Min Sci 47(2):279–285. https://doi.org/10.1016/j.ijrmms.2009.11.009

    Article  Google Scholar 

  65. Jones LD, Jefferson I (2012) Expansive soils. In ICE Manuals, Institution of Civil Engineers, UK

  66. Ju J, Yuan K, Kuo A (2011) Novel strain energy based coupled elastoplastic damage and healing models for geomaterials—part i: formulations. Int J Damage Mech 21:525–549

    Article  Google Scholar 

  67. Julina M, Thyagaraj T (2020) Combined effects of wet-dry cycles and interacting fluid on desiccation cracks and hydraulic conductivity of compacted clay. Eng Geol 267:105505. https://doi.org/10.1016/j.enggeo.2020.105505

    Article  Google Scholar 

  68. Katsumi T, Ishimori H, Onikata M, Fukagawa R (2008) Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions. Geotext Geomembr 26(1):14–30. https://doi.org/10.1016/j.geotexmem.2007.04.003

    Article  Google Scholar 

  69. Kim WH, Daniel DE (1993) Effects of freezing on hydraulic conductivity of compacted clay. J Geotech Eng 119(11):1865. https://doi.org/10.1061/(asce)0733-9410(1992)118:7(1083)

    Article  Google Scholar 

  70. Klose M, Highland L, Damm B, Terhorst B (2014) Estimation of direct landslide costs in industrialized countries: challenges, concepts, and case study. Landslides for a Saf Geoenviron 2:661–667

    Article  Google Scholar 

  71. Kodikara J, Chakrabarti S (2005) Modeling of moisture loss in cementitiously stabilized pavement materials. Int J Geomech 5(4):295–303. https://doi.org/10.1061/(asce)1532-3641(2005)5:4(295)

    Article  Google Scholar 

  72. Kolstad DC, Benson CH, Edil TB (2004) Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions. J Geotech Geoenviron Eng 130(12):1236–1249. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1236)

    Article  Google Scholar 

  73. Konrad JM, Samson M (2000) Hydraulic conductivity of kaolinite-silt mixtures subjected to closed-system freezing and thaw consolidation. Can Geotech J 37(4):857–869. https://doi.org/10.1139/t00-003

    Article  Google Scholar 

  74. Lambe T (1958) The structure of compacted clay. J Soil Mech Found Eng ASCE 84(2):1–35

    Google Scholar 

  75. Lary DJ, Alavi AH, Gandomi AH, Walker AL (2016) Machine learning in geosciences and remote sensing. Geosci Front 7(1):3–10. https://doi.org/10.1016/j.gsf.2015.07.003

    Article  Google Scholar 

  76. Lemaitre J (1984) How to use damage mechanics. Nucl Eng Des 80:233–245

    Article  Google Scholar 

  77. Li JH, Li L, Chen R, Li DQ (2016) Cracking and vertical preferential flow through landfill clay liners. Eng Geol 206:33–41. https://doi.org/10.1016/j.enggeo.2016.03.006

    Article  Google Scholar 

  78. Li T, Rowe K (2017) A preliminary study of the self-healing of a fully penetrating hole in gcls on full hydration. In: Geotechnical frontiers, pp 278–287

  79. Li T, Rowe R (2020) GCL self-healing: fully penetrating hole/slit hydrated with RO water and 10 mM Ca solution. Geosynth Int 27(1):34–47

    Article  Google Scholar 

  80. Li Q, Xing H, Liu J, Liu X (2015) A review on hydraulic fracturing of unconventional reservoir. Petroleum 1(1):8–15. https://doi.org/10.1016/j.petlm.2015.03.008

    Article  Google Scholar 

  81. Li JH, Zhang LM (2011) Study of desiccation crack initiation and development at ground surface. Eng Geol 123(4):347–358. https://doi.org/10.1016/j.enggeo.2011.09.015

    Article  Google Scholar 

  82. Li JH, Zhang LM, Wang Y, Fredlund DG (2009) Permeability tensor and representative elementary volume of saturated cracked soil. Can Geotech J 46(8):928–942. https://doi.org/10.1139/T09-037

    Article  Google Scholar 

  83. Lin BL, Benson CH (2000) Effect of wet-dry cycling on swelling and hydraulic conductivity of GCLs. J Geotech Geoenviron Eng 126(January):40–49

    Article  Google Scholar 

  84. Lu Y, Liu S, Weng L, Wang L, Li Z, Xu L (2016) Fractal analysis of cracking in a clayey soil under freeze-thaw cycles. Eng Geol 208:93–99. https://doi.org/10.1016/j.enggeo.2016.04.023

    Article  Google Scholar 

  85. Lyu Z, Chai J, Xu Z, Qin Y, Cao J (2019) A comprehensive review on reasons for tailings dam failures based on case history. Adv Civ Eng. https://doi.org/10.1155/2019/4159306

    Article  Google Scholar 

  86. Ma L et al (2021) In-situ synchrotron characterisation of fracture initiation and propagation in shales during indentation. Energy 215:119161. https://doi.org/10.1016/j.energy.2020.119161

    Article  Google Scholar 

  87. Malusis MA, Yeom S, Evans JC (2011) Hydraulic conductivity of model soil-bentonite backfills subjected to wet-dry cycling. Can Geotech J 48(8):1198–1211. https://doi.org/10.1139/t11-028

    Article  Google Scholar 

  88. McBrayer M, Mauldon M, Drumm E, Wilson G (1997) Infiltration tests on fractured compacted clay. J Geotech hiyou’re back 123:469–473

    Google Scholar 

  89. Meier PM, Trick T, Blümling P, Volckaert G (2002) Self-healing of fractures within the EDZ at the Mont Terri rock laboratory: results after one year of experiemental work. In: Proceedings of international workshop on geomechanics, hydromechanical and thermohydro-mechanical behaviour of deep argillaceous rocks: theory and experiment, 2002, pp. 267–274. http://www.solexperts.com/images/PUBLIKATIONEN/Englisch/pub_en_136_self-healing_of_fractures_v1.pdf

  90. Mesri G, Olson R (1971) Mechanisms controlling the permeability of clays. Clays Clay Miner 19(3):151–158

    Article  Google Scholar 

  91. Mignon A, Vermeulen J, Snoeck D, Dubruel P, Van Vlierberghe S, De Belie N (2017) Mechanical and self-healing properties of cementitious materials with pH-responsive semi-synthetic superabsorbent polymers. Mater Struct Constr 50(6):1–12. https://doi.org/10.1617/s11527-017-1109-4

    Article  Google Scholar 

  92. Miller C, Mi H, Yesiller N (1998) Experimental analysis of desiccation crack propagation in clay liners. J Am Water Resour Assoc 34(3):677–686

    Article  Google Scholar 

  93. Mitchell J, Soga K (2005) Fundamentals of soil behaviour. John Wiley & Sons, Hoboken

    Google Scholar 

  94. Mohammad N, Meng W, Zhang Y, Liu M, El-Zein A, Gan Y (2020) Desiccation crack formation and prevention in thin bentonite layers. Environ. Geotech, pp 1–16. [Online]. Available: (Manuscript%0Asubmitted)

  95. Mohammadi M, Choobbasti AJ (2018) The effect of self-healing process on the strength increase in clay. J Adhes Sci Technol 32(16):1750–1772. https://doi.org/10.1080/01694243.2018.1445070

    Article  Google Scholar 

  96. Morris PH, Graham J, Williams DJ (1992) Cracking in drying soils. Can Geotech J 29:263–277

    Article  Google Scholar 

  97. Muhammad NZ et al (2016) Tests and methods of evaluating the self-healing efficiency of concrete: a review. Constr Build Mater 112:1123–1132. https://doi.org/10.1016/j.conbuildmat.2016.03.017

    Article  Google Scholar 

  98. Omidi GH, Thomas JC, Brown KW (1996) Effect of desiccation cracking on the hydraulic conductivity of a compacted clay liner. Water Air Soil Pollut 89(1–2):91–103. https://doi.org/10.1007/BF00300424

    Article  Google Scholar 

  99. Othman MA, Benson CH (1993) Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay. Can Geotech J 30(2):236–246. https://doi.org/10.1139/t93-020

    Article  Google Scholar 

  100. Parastar F, Hejazi SM, Sheikhzadeh M, Alirezazadeh A (2017) A parametric study on hydraulic conductivity and self-healing properties of geotextile clay liners used in landfills. J Environ Manag 202:29–37. https://doi.org/10.1016/j.jenvman.2017.07.013

    Article  Google Scholar 

  101. Petrov RJ, Rowe RK (1997) Geosynthetic clay liner (GCL)—chemical compatibility by hydraulic conductivity testing and factors impacting its performance. Can Geotech J 34(6):863–885. https://doi.org/10.1139/t97-055

    Article  Google Scholar 

  102. Pilz FF, Dowey PJ, Fauchille A, Courtois L, Bay B (2017) Synchrotron tomographic quantification of strain and fracture during simulated thermal maturation of an organic-rich shale, UK Kimmeridge Clay. J Geophys Res Solid Earth 122:2553–2564. https://doi.org/10.1002/2016JB013874

    Article  Google Scholar 

  103. Prongmanee N, Chai J-C (2017) Effect of shape of damage hole on self-healing capacity of GCL. Geosynth Eng J 32:59. https://doi.org/10.5030/jcigsjournal.32.59

    Article  Google Scholar 

  104. Qi J, Vermeer PA, Cheng G (2006) A review of the influence of freeze-thaw cycles on soil geotechnical properties. Permafr Periglac Process 17:245–253. https://doi.org/10.1002/ppp

    Article  Google Scholar 

  105. Qi W, Zhang Z, Wang C, Chen Y, Zhang Z (2020) Crack closure and flow regimes in cracked clay loam subjected to different irrigation methods. Geoderma 358:113978. https://doi.org/10.1016/j.geoderma.2019.113978

    Article  Google Scholar 

  106. Rayhani MHT, Yanful EK, Fakher A (2007) Desiccation-induced cracking and its effect on the hydraulic conductivity of clayey soils from Iran. Can Geotech J 44(3):276–283. https://doi.org/10.1139/T06-125

    Article  Google Scholar 

  107. Reddy KR, El-Zein A, Airey DW, Alonso-Marroquin F, Schubel P, Manalo A (2020) Self-healing polymers: synthesis methods and applications. Nano-Struct Nano-Objects 23:100500. https://doi.org/10.1016/j.nanoso.2020.100500

    Article  Google Scholar 

  108. Romero E, Gens A, Lloret A (2001) Temperature effects on the hydraulic behaviour of an unsaturated clay. Geotech Geol Eng 19(3–4):311–332. https://doi.org/10.1023/A:1013133809333

    Article  Google Scholar 

  109. Rowe RK (2005) Long-term performance of contaminant barrier systems. Geotechnique 55(9):631–678. https://doi.org/10.1680/geot.2005.55.9.631

    Article  Google Scholar 

  110. Salari M, Akhtarpour A, Ekramifard A (2018) Hydraulic fracturing: a main cause of initiating internal erosion in a high earth-rock fill dam. Int J Geotech Eng 00(00):1–13. https://doi.org/10.1080/19386362.2018.1500122

    Article  Google Scholar 

  111. Salemi N, Mehdi S, Mohammadali A, Seyed R, Hejazi M (2018) Geosynthetic clay liners: effect of structural properties and additives on hydraulic performance and durability. Environ Earth Sci 77(5):1–13. https://doi.org/10.1007/s12665-018-7364-z

    Article  Google Scholar 

  112. Sari K, Chai J (2013) Self healing capacity of geosynthetic clay liners and influencing factors. Geotext Geomembr 41:64–71. https://doi.org/10.1016/j.geotexmem.2013.08.006

    Article  Google Scholar 

  113. Shao JF, Jia Y, Kondo D, Chiarelli AS (2006) A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mech Mater 38:218–232. https://doi.org/10.1016/j.mechmat.2005.07.002

    Article  Google Scholar 

  114. Sherard JL (1973) Embankment dam cracking. Wiley, Hoboken

    Google Scholar 

  115. Shi C, Booth R (2005) Laboratory development and field demonstration of self-sealing/self-healing landfill liner. Waste Manag 25(3):231–238. https://doi.org/10.1016/j.wasman.2004.11.006

    Article  Google Scholar 

  116. Singh SP, Rout S, Tiwari A (2017) Quantification of desiccation cracks using image analysis technique. Int J Geotech Eng. https://doi.org/10.1080/19386362.2017.1282400

    Article  Google Scholar 

  117. Snoeck D, Van Tittelboom K, Steuperaert S, Dubruel P, De Belie N (2014) Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J Intell Mater Syst Struct 25(1):13–24. https://doi.org/10.1177/1045389X12438623

    Article  Google Scholar 

  118. Stavropoulou E et al (2019) Liquid water uptake in unconfined Callovo Oxfordian clay-rock studied with neutron and X-ray imaging. Acta Geotech 14:19–33. https://doi.org/10.1007/s11440-018-0639-4

    Article  Google Scholar 

  119. Stirling RA, Glendinning S, Davie CT (2017) Modelling the deterioration of the near surface caused by drying induced cracking. Appl Clay Sci 146(June):176–185. https://doi.org/10.1016/j.clay.2017.06.003

    Article  Google Scholar 

  120. Stoltz G, Cuisinier O, Masrouri F (2012) Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayey soil. Appl Clay Sci 61:44–51. https://doi.org/10.1016/j.clay.2012.04.001

    Article  Google Scholar 

  121. Sun D et al (2018) Historical perspective a comprehensive review on self-healing of asphalt materials: mechanism, model, characterization and enhancement. Adv Colloid Interface Sci 256:65–93. https://doi.org/10.1016/j.cis.2018.05.003

    Article  Google Scholar 

  122. Tabassum T, Bheemasetti T (2020) Self-healing and desiccation crack behavior of kaolinite-rich clay soil

  123. Tang CS, Cheng Q, Leng T, Shi B, Zeng H, Inyang HI (2020) Effects of wetting-drying cycles and desiccation cracks on mechanical behavior of an unsaturated soil. CATENA 194:104721. https://doi.org/10.1016/j.catena.2020.104721

    Article  Google Scholar 

  124. Tang CS, Cui YJ, Shi B, Tang AM, Liu C (2011) Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles. Geoderma 166(1):111–118. https://doi.org/10.1016/j.geoderma.2011.07.018

    Article  Google Scholar 

  125. Tengattini A, Lenoir N, Andò E, Viggiani G (2020) Geomechanics for energy and the environment neutron imaging for geomechanics: a review. Geomech Energy Environ. https://doi.org/10.1016/j.gete.2020.100206

    Article  Google Scholar 

  126. The Climate Principles—A Framework for the Finance Sector, “Shale gas exploration and production Key issues and responsible business practices Guidance note for financiers, 2013. [Online]. http://iehn.org/documents/CPFIShaleGasGuidanceNoteApril2013.pdf

  127. Tomas R, Li Z (2017) Earth observations for geohazards: present and future challenges. Remote Sens 9(3):194. https://doi.org/10.3390/rs9030194

    Article  Google Scholar 

  128. Topal E, Lö M, Zschech E (2020) Deep learning-based inaccuracy compensation in reconstruction of high resolution XCT data. Sci Rep 10(7682):1–13. https://doi.org/10.1038/s41598-020-64733-7

    Article  Google Scholar 

  129. Udukumburage RS, Gallage C, Dawes L (2019) Oedometer based estimation of vertical shrinkage of expansive soil in a large instrumeted soil column. Heliyon 5(9):e02380. https://doi.org/10.1016/j.heliyon.2019.e02380

    Article  Google Scholar 

  130. Utili S (2013) Investigation by limit analysis on the stability of slopes with cracks. Geotechnique 63(2):140–154

    Article  Google Scholar 

  131. van Paassen LA, Ghose R, van der Linden TJM, van der Star WRL, van Loosdrecht MCM (2010) Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenviron Eng 136(12):1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382

    Article  Google Scholar 

  132. Viklander P (1998) Permeability and volume changes in till due to cyclic freeze/thaw. Can Geotech J 35(3):471–477. https://doi.org/10.1139/t98-015

    Article  Google Scholar 

  133. Villar MV, Gómez-Espina R, Lloret A (2010) Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite. J Rock Mech Geotech Eng 2(1):71–78. https://doi.org/10.3724/SP.J.1235.2010.00071

    Article  Google Scholar 

  134. Villar MV, Lloret A (2004) Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl Clay Sci 26:337–350. https://doi.org/10.1016/j.clay.2003.12.026

    Article  Google Scholar 

  135. Voyiadjis GZ, Shojaei A, Li G (2011) A thermodynamic consistent damage and healing model for self healing materials. Int J Plast 27(7):1025–1044. https://doi.org/10.1016/j.ijplas.2010.11.002

    Article  MATH  Google Scholar 

  136. Wang X, Li J (2015) A novel liquid bridge model for estimating SWCC and permeability of granular material. Powder Technol 275:121–130. https://doi.org/10.1016/j.powtec.2015.01.044

    Article  Google Scholar 

  137. Wang C, Zhang Z, Fan S, Mwiya R, Xie M (2018) Effects of straw incorporation on desiccation cracking patterns and horizontal fl ow in cracked clay loam. Soil Tillage Res 182:130–143. https://doi.org/10.1016/j.still.2018.04.006

    Article  Google Scholar 

  138. Wilkins E (1956) Cumulative damage in fatigue. In Colloquium on fatigue, pp 321–332

  139. Yesiller N, Miller CJ, Inci G, Yaldo K (2000) Desiccation and cracking behavior of three compacted landfill liner soils. Eng Geol 57(1–2):105–121. https://doi.org/10.1016/S0013-7952(00)00022-3

    Article  Google Scholar 

  140. Yu B, El-Zein A (2019) Experimental investigation of the effect of airgaps in preventing desiccation of bentonite in geosynthetic clay liners exposed to high temperatures. Geotext Geomembr 47(2):142–153. https://doi.org/10.1016/j.geotexmem.2018.12.002

    Article  Google Scholar 

  141. Yu B, El-Zein A, Rowe RK (2020) Effect of added polymer on the desiccation and healing of a geosynthetic clay liner subject to thermal gradients. Geotext Geomembr. https://doi.org/10.1016/j.geotexmem.2020.08.001

    Article  Google Scholar 

  142. Yuen K, Graham J, Janzen P (1998) Weathering-induced fissuring and hydraulic conductivity in a natural plastic clay. Can Geotech J 35(6):1101–1108. https://doi.org/10.1139/t98-068

    Article  Google Scholar 

  143. Zhang CL (2011) Experimental evidence for self-sealing of fractures in claystone. Phys Chem Earth 36(17–18):1972–1980. https://doi.org/10.1016/j.pce.2011.07.030

    Article  Google Scholar 

  144. Zhang G, Wang R, Qian J, Zhang JM, Qian J (2012) Effect study of cracks on behavior of soil slope under rainfall conditions. Soils Found 52(4):634–643. https://doi.org/10.1016/j.sandf.2012.07.005

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge that research conducted for this paper, as well as experimental and theoretical research investigations by the authors, reported in this paper, have been funded by an Australian Research Council Discovery Grant DP170104192. Imaging for the research has been carried out at the Sydney Microscopy and Microanalysis (SMM) of the University of Sydney. We thank PhD candidate Sepideh Taheri for her help in producing figure 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas El-Zein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Zein, A., Airey, D., Yu, B. et al. Self-repair of cracks and defects in clay: a review of evidence, mechanisms, theories and nomenclature. Acta Geotech. 16, 3741–3760 (2021). https://doi.org/10.1007/s11440-021-01382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01382-8

Keywords

Navigation