Skip to main content
Log in

Performance of embankments with rigid columns embedded in an inclined underlying stratum: centrifuge and numerical modelling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Rigid columns penetrating a firm underlying stratum have often been used to enhance the stability and improve the settlement of embankments over soft ground. Furthermore, an inclined underlying stratum is commonly encountered in engineering practice. This investigation experimentally and numerically studies the performance of embankments over soft ground reinforced by rigid columns with various embedment depths. In centrifuge tests, a tilting failure occurs for columns with an embedment depth Le of 2D (D is the diameter of columns), whereas the embankments remain stable for Le of 7D. This result indicates that the inclined underlying stratum weakens the restraint effect at the column base and that a greater embedment depth is required to ensure the stability of embankments. Parametric studies numerically reveal that there exists a critical embedment depth, which represents a shift in the failure mechanism. The optimum column layout is determined based on the contributions of columns in different locations beneath an embankment. Finally, the influence of the embedment depth on the distribution of the bending moment of the columns and the soil reaction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abusharar SW, Han J (2011) Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay. Eng Geol 120(1–4):103–110

    Article  Google Scholar 

  2. Boulanger RW, Kutter BL, Brandenberg SJ, Singh P, Chang D (2003) Column foundations in liquefied and laterally spreading ground during earthquakes: centrifuge experiments analyses (No. UCD/CGM-03/01). Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, California

  3. Broms BB (1999) Keynote lecture: design of lime, lime/cement and cement columns. In: International conference on dry mix methods: dry mix methods for deep soil stabilization, Stockholm, Sweden AA, Balkema, Rotterdam, Netherlands, pp 125–153

  4. Cabrera MA, Wu W (2017) Experimental modelling of free-surface dry granular flows under a centrifugal acceleration field. Granul Matter 19(4):78

    Article  Google Scholar 

  5. Cabrera M, Mathews J, Wu W (2016) Granular flows in the centrifuge. In: Proceedings of the 3rd European conference on physical modelling in geotechnics (EUROFUGE 2016)

  6. Chai JC, Shrestha S, Hino T, Ding WQ, Kamo Y, Carter J (2015) 2D and 3D analyses of an embankment on clay improved by soil–cement columns. Comput Geotech 68:28–37

    Article  Google Scholar 

  7. Chai JC, Shrestha S, Hino Uchikoshi T (2017) Predicting bending failure of CDM columns under embankment loading. Comput Geotech 91:169–178

    Article  Google Scholar 

  8. Chen JF, Li LY, Xue JF, Feng SZ (2015) Failure mechanism of geosynthetic-encased stone columns in soft soils under embankment. Geotext Geomembr 43(5):24–431

    Article  Google Scholar 

  9. Comodromos EM, Papadopoulou MC, Rentzeperis IK (2009) Effect of cracking on the response of column test under horizontal loading. J Geotech Geoenviron 135(9):1275–1284

    Article  Google Scholar 

  10. Gong X (2008) Ground improvement handbook, 3rd edn. China Building Industry Press, Beijing (in Chinese)

    Google Scholar 

  11. Gourvenec S, Acosta-Martinez HE, Randolph MF (2009) Experimental study of uplift resistance of shallow skirted foundations in clay under transient and sustained concentric loading. Geotechnique 59(6):525–537

    Article  Google Scholar 

  12. Han J (2014) Recent research and development of ground column technologies. Proc Inst Civ Eng Ground Improv 168:246–264

    Article  Google Scholar 

  13. Han J, Chai JC, Leshchinsky D (2004) Evaluation of deep-seated slope stability of embankments over deep mixed foundations. ASCE Geo-Support 1-10

  14. He Y, Hazarika H, Yasufuku N, Han Z (2015) Evaluating the effect of slope angle on the distribution of the soil–column pressure acting on stabilizing columns in sandy slopes. Comput Geotech 69:153–165

    Article  Google Scholar 

  15. He Y, Hazarika H, Yasufuku N, Teng J, Jiang Z, Han Z (2015) Estimation of lateral force acting on columns to stabilize landslides. Nat Hazards 79(3):1981–2003

    Article  Google Scholar 

  16. Hu Y, Zhang G, Zhang JM, Lee CF (2010) Centrifuge modeling of geotextile-reinforced cohesive slopes. Geotext Geomembr 28(1):12–22

    Article  Google Scholar 

  17. Huang J, Han J (2008) Critical height of a deep mixed column-supported embankment under an undrained condition. In: GeoCongress: geosustainability and geohazard mitigation, pp. 638–645

  18. Itasca (2006) FLAC3D user’s guide

  19. Jamsawang P, Yoobanpot N, Thanasisathit N, Voottipruex P, Jongpradist P (2016) Three-dimensional numerical analysis of a DCM column-supported highway embankment. Comput Geotech 72:42–56

    Article  Google Scholar 

  20. Jing ZD, Liu L, Zheng G, Jiang Y (2008) Numerical analysis of column lateral behavior of column supported embankment. J Cent South Univ Technol 15:87–92

    Article  Google Scholar 

  21. Karthigeyan S, Ramakrishna VV, Rajagopal K (2007) Numerical investigation of the effect of vertical load on the lateral response of columns. J Geotech Geoenviron 133(5):512–521

    Article  Google Scholar 

  22. Kitazume M, Maruyama K (2005) Collapse failure of group column type deep mixing improved ground under embankment. In: International conference on deep mixing, Swedish Geotechnical Institute, Stockholm, Sweden, pp 245–254

  23. Kitazume M, Maruyama K (2006) External stability of group column type deep mixing improved ground under embankment loading. Soils Found 46(3):323–340

    Article  Google Scholar 

  24. Kitazume M, Maruyama K (2007) Internal stability of group column type deep mixing improved ground under embankment loading. Soils Found 47(3):437–455

    Article  Google Scholar 

  25. Kitazume M, Yamamoto M, and Udaka Y (1999) Vertical bearing capacity of column type DMM ground with low improvement ratio. In: Proceedings of the international conference on dry mix methods for deep soil stabilization, pp 245–250

  26. Ladd CC (1964) Stress–strain modulus of clay in undrained shear. J Soil Mech Found Div 90(5):103–132

    Google Scholar 

  27. Larsson S, Malm R, Charbit B, Ansell A (2012) Finite element modelling of laterally loaded lime–cement columns using a damage plasticity model. Comput Geotech 44:48–57

    Article  Google Scholar 

  28. Luo F, Zhang G (2016) Progressive failure behavior of cohesive soil slopes under water drawdown conditions. Environ Earth Sci 75(11):1–12

    Article  Google Scholar 

  29. Luo F, Zhang G, Liu Y, Ma C (2018) Centrifuge modeling of the geotextile reinforced slope subject to drawdown. Geotext Geomembr 46(1):11–21

    Article  Google Scholar 

  30. Navin MP, Filz GM (2006) Numerical stability analyses of embankments supported on deep mixed columns. In: Ground modification and seismic mitigation GSP 152

  31. Peng X, Yu P, Zhang Y, Chen G (2018) Applying modified discontinuous deformation analysis to assess the dynamic response of sites containing discontinuities. Eng Geol 246(11):349–360

    Article  Google Scholar 

  32. Poulos HG, Davis EH (1980) Column foundation analysis and design (No. Monograph)

  33. Reese LC, Van Impe WF (2001) Single columns and column groups under lateral loading. Balkema, Rotterdam

    Google Scholar 

  34. Schofield AN (1980) Cambridge geotechnical centrifuge operations. Geotechnique 30(3):227–268

    Article  Google Scholar 

  35. Stanier SA, Dijkstra J, Leśniewska D, Hambleton JP, White DJ, Muir Wood D (2016) Vermiculate artefacts in image analysis of granular materials. Comput Geotech 72(2):100–113

    Article  Google Scholar 

  36. Taghavi A, Muraleetharan KK, Miller GA, Cerato AB (2015) Centrifuge modeling of laterally loaded column groups in improved soft clay. J Geotech Geoenviron 142(4):04015099

    Article  Google Scholar 

  37. Technical code for composite foundation (2012) GB/T50783. China Technology Press, Beijing (in Chinese)

    Google Scholar 

  38. Toshinari Y, Matsuda S, Kitazume M, Nguyen B (2017) Centrifuge model studies on external stability of column type deep mixing ground on inclined foundation. Grouting 2017:227–236

    Google Scholar 

  39. Wang LP, Zhang G (2014) Centrifuge model test study on column reinforcement behavior of cohesive soil slopes under earthquake conditions. Landslides 11(2):213–223

    Article  Google Scholar 

  40. Wang Y, Zhang G (2016) Centrifuge modeling of the progressive failure of a soil slope under cyclic loading conditions. In: Geo-Chicago, pp 618–627

  41. Wang R, Zhang G, Zhang JM (2010) Centrifuge modelling of clay slope with montmorillonite weak layer under rainfall conditions. Appl Clay Sci 50(3):386–394

    Article  Google Scholar 

  42. Wang L, Zhang G, Zhang JM (2011) Centrifuge model tests of geotextile-reinforced soil embankments during an earthquake. Geotext Geomembr 29(3):222–232

    Article  Google Scholar 

  43. White DJ (2002) An investigation into the behaviour of pressed-in columns. University of Cambridge PhD Dissertation

  44. White DJ, Take WA, Bolton MD (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53(7):619–631

    Article  Google Scholar 

  45. Yapage NNS, Liyanapathirana DS, Poulos HG, Kelly RB, Leo CJ (2012) An investigation of progressive failure of geosynthetic reinforced deep cement mixed column supported embankments. Int Conf Ground Improv Ground Control Res Publ Singap 2:1345–1351

    Google Scholar 

  46. Yapage NNS, Liyanapathirana DS, Poulos HG, Kelly RB, Leo CJ (2015) Numerical modeling of geotextile-reinforced embankments over deep cement mixed columns incorporating strain-softening behavior of columns. Int J Geomech 15(2):04014047

    Article  Google Scholar 

  47. Zhang MX, Javadi AA, Min X (2006) Triaxial tests of sand reinforced with 3D inclusions. Geotext Geomembr 24(4):201–209

    Article  Google Scholar 

  48. Zhang G, Cao J, Wang L (2013) Centrifuge model tests of deformation and failure of nailing-reinforced slope under vertical surface loading conditions. Soils Found 53(1):117–129

    Article  Google Scholar 

  49. Zhang Y, Chen G, Zheng L, Li Y, Wu J (2013) Effects of near-fault seismic loadings on run-out of large-scale landslide: a case study. Eng Geol 166(8):216–236

    Article  Google Scholar 

  50. Zhang Z, Han J, Ye G (2014) Numerical analysis of failure modes of deep mixed column-supported embankments on soft soils. In: Ground improvement and geosynthetics GSP, p 238

  51. Zhang Z, Han J, Ye G (2014) Numerical investigation on factors for deep-seated slope stability of stone column-supported embankments over soft clay. Eng Geol 168:104–113

    Article  Google Scholar 

  52. Zheng G, Liu L (2009) Numerical analysis of the column lateral behavior and anti-slip mechanism of rigid column supported embankments. Adv Ground Improv Res Pract U S China 245(187):63–72

    Article  Google Scholar 

  53. Zheng G, Liu L, Han J (2010) Stability of embankment on soft subgrade reinforced by rigid inclusions (II)-group columns analysis. Chin J Geotech Eng 32(12):1811–1820 (in Chinese)

    Google Scholar 

  54. Zheng G, Li S, Diao Y (2012) Centrifugal model tests on failure mechanisms of embankments on soft ground reinforced by rigid columns. Chin J Geotech Eng 34(11):1977–1989 (in Chinese)

    Google Scholar 

  55. Zheng G, Diao Y, Li S, Han J (2013) Stability failure modes of rigid column-supported embankments. In: Geo-Congress, pp 1821–1824

  56. Zheng G, Yang X, Zhou H, Sun J (2017) Stability and control strategy of ground improved with rigid columns to support embankments based on progressive failure. Chin J Geotech Eng 39(4):581–591 (in Chinese)

    Google Scholar 

  57. Zheng G, Yang X, Zhou H, Chai J (2019) Numerical modeling of progressive failure of rigid columns under an embankment load. Can Geotech J 56:23–34

    Article  Google Scholar 

  58. Zhou HZ, Diao Y, Zheng G, Han J, Jia R (2017) Failure modes and bearing capacity of strip footings on soft ground reinforced by floating stone columns. Acta Geotech 12(5):1089–1103

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 51708405  and 41630641), the National Key RD Program of China (Grant No. 2017YFC0805407), and the Project of Tianjin Science and Technology Plan (No. 16YDLJSF00040). The authors thank Professor Jinchun Chai at Saga University for his assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zheng, G., Liu, J. et al. Performance of embankments with rigid columns embedded in an inclined underlying stratum: centrifuge and numerical modelling. Acta Geotech. 14, 1571–1584 (2019). https://doi.org/10.1007/s11440-019-00825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00825-7

Keywords

Navigation