Skip to main content
Log in

Development of a generalized model using a new plastic modulus based on bounding surface plasticity

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Numerous attempts have been made to modify the generalized constitutive model and to introduce new constitutive models in the framework of generalized plasticity. The modified models can predict the behavior of sand fairly well, however, such models require many parameters and are difficult to calibrate. Moreover, it is highly desirable for a model to be able to reproduce soil behavior using a single set of parameters. In this paper, the constitutive model by Pastor and Zienkiewicz is further developed based on critical state and bounding surface models. The model is used to simulate the behavior of three types of sands under monotonic and cyclic loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\( \alpha \) :

Model parameter

\( d_{g} \) :

Dilatancy

\( \bar{\delta } \) :

Distance from the bounding surface to calculate the plastic modulus

\( \delta_{b} \) :

Distance between the current stress and the image stress

\( \delta^{\prime}_{b} \) :

Distance from the current stress to the supplement image stress

\( \delta_{r} \) :

Distance between \( \sigma_{ij}^{r} \) and the current stress

\( \delta_{ij} \) :

Kronecker delta

\( E_{ijkl} \) :

Elastic constitutive tensor

\( e_{c} \) :

Critical void ratio corresponding to the current mean effective stress

\( e_{\varGamma } \) :

Interception of the critical state line

\( \dot{\varepsilon }_{ij}^{e} \) :

Incremental tensor of elastic strain

\( \dot{\varepsilon }_{ij}^{p} \) :

Incremental tensor of plastic strain

\( \dot{\varepsilon }_{ij}^{r} \) :

Incremental strain at the update point

\( F \) :

Bounding surface

\( G \) :

Shear modulus

\( G_{0} \) :

Model constant (in shear modulus relation)

\( H_{0} \) :

Model parameter

\( J_{2} \) :

Second invariant of deviatoric stress

\( J_{3} \) :

Third invariant of deviatoric stress

\( K \) :

Bulk modulus

\( K_{0} \) :

Model constant (in bulk modulus relation)

\( K_{p} \) :

Plastic modulus

\( \lambda \) :

Loading index

\( \lambda_{c} \) :

Slope of the critical state line

\( M \) :

Peak stress ratio

\( M_{c} \) :

Stress ratio at critical state (failure line)

\( M_{g} \) :

Phase transformation stress ratio

\( m_{{}} \) :

Model parameter

\( m_{b} \) :

Model parameter

\( m_{g} \) :

Model parameter

\( \eta \) :

Stress ratio

\( n_{ij}^{{}} \) :

The loading direction

\( n_{ij}^{g} \) :

Plastic-flow-direction (incremental plastic strain direction)

\( \nu \) :

Poisson’s ratio

\( p \) :

Mean effective stress

\( p_{a} \) :

Atmospheric pressure

\( p_{n} \) :

Normalized mean effective stress

\( q \) :

Deviatoric stress

\( S_{ij} \) :

Deviatoric stress tensor

\( \bar{S}_{ij} \) :

Deviatoric tensor of image stress on the bounding surface

\( \psi \) :

State parameter

\( \dot{\sigma }_{ij} \) :

Incremental stress tensor

\( \bar{\sigma }_{ij} \) :

Image stress on the bounding surface

\( \bar{\sigma }^{\prime}_{ij} \) :

Supplement image stress

\( \sigma_{ij}^{r} \) :

Initial stress at the update (reversal) point

\( \theta \) :

Lode angle

\( \gamma \) :

Model parameter

References

  1. Andrianopoulos KI, Papadimitriou AG, Bouckovalas GD (2010) Bounding surface plasticity model for the seismic liquefaction analysis of geostructures. Soil Dyn Earthq Eng 30(10):895–911

    Article  MATH  Google Scholar 

  2. Bardet JF (1986) Bounding surface plasticity model for sand. J Eng Mech 112:1198–1217

    Article  Google Scholar 

  3. Been K (1999) The critical state line and its application to soil liquefaction. Physics and mechanics of soil liquefaction. Balkema, Rotterdam, pp 195–204

    Google Scholar 

  4. Been K, Jefferies MG (1985) A state parameter for sand. Geotechnique 35(2):99–112

    Article  Google Scholar 

  5. Castro G (1969) Liquefaction of sands. Ph.D. Thesis, Harvard University, Harvard Soil Mech, Series no. 81

  6. Chen JB (2017) A monotonic bounding surface critical state model for clays. Acta Geotech 12:225–230

    Article  Google Scholar 

  7. Conti R, Viggiani GMB, Perugini F (2014) Numerical modelling of centrifuge dynamic tests of circular tunnels in dry sand. Acta Geotech 9(4):597–612

    Article  Google Scholar 

  8. Dafalias YF (1986) Bounding surface plasticity. I: mathematical foundation and hypoplasticity. J Eng Mech 112(9):966–987

    Article  Google Scholar 

  9. Dafalias YF, Herrmann LR (1982) Bounding surface formulation of soil plasticity. In: Pande GN, Zienkiewicz OC (eds) Soil mechanics—transient and cyclic loads. Wiley, New York, pp 253–282

    Google Scholar 

  10. Dafalias YF, Herrmann LR (1986) Bounding surface plasticity. II application to isotropic cohesive soils. J Eng Mech 112(12):1263–1291

    Article  Google Scholar 

  11. Dafalias YF, Manzari MT (2004) Simple plasticity sand model accounting for fabric change effects. J Eng Mech 130(6):622–634

    Article  Google Scholar 

  12. Dafalias YF, Popov EP (1975) A model of non-linearly hardening materials for complex loadings. Acta Mech 21:173–192

    Article  MATH  Google Scholar 

  13. Frossard E (1983) Une equation d’ecoulement simple pour les materiaux granulaires. Geotechnique 33(1):21–29

    Article  Google Scholar 

  14. Fuentes W, Tafili M, Triantafyllidis TH (2017) An ISA-plasticity-based model for viscous and non-viscous clays. Acta Geotech. doi:10.1007/s11440-017-0548-y

    Google Scholar 

  15. Fuentes W, Triantafyllidis T, Lizcano A (2012) Hypoplastic model for sands with loading surface. Acta Geotech 7:177–192

    Article  Google Scholar 

  16. Heidarzadeh (2016) A constitutive model without yield surface for both monotonic and cyclic behaviors of soils. Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran

  17. Hong PY, Pereira JM, Tang AM, Cui YJ (2016) A two-surface plasticity model for stiff clay. Acta Geotech 11:871–885

    Article  Google Scholar 

  18. Hu C, Liu H, Huang W (2012) Anisotropic bounding-surface plasticity model for the cyclic shakedown and degradation of saturated clay. Comput Geotech 44:34–47

    Article  Google Scholar 

  19. Huang M, Liu Y, Sheng D (2011) Simulation of yielding and stress–stain behavior of shanghai soft clay. Comput Geotech 38:341–353

    Article  Google Scholar 

  20. Iraji A, Farzaneh O, Hosseininia ES (2013) A modification to dense sand dynamic simulation capability of Pastor–Zienkiewicz–Chan model. Acta Geotech 9(2):343–353

    Article  Google Scholar 

  21. Jefferies M (1993) Nor-sand: a simple critical state model for sand. Géotechnique 43(1):91–103

    Article  Google Scholar 

  22. Jiang JH, Hoe I, Ling HI, Kaliakin VN, Zeng XY, Hung C (2017) Evaluation of an anisotropic elastoplastic–viscoplastic bounding surface model for clays. Acta Geotech 12:35–348

    Google Scholar 

  23. Krieg RD (1975) A practical two-surface plasticity theory. J Appl Mech 42:641–646

    Article  Google Scholar 

  24. Lade PV, Duncan JM (1973) Cubical triaxial tests on cohesionless soil. J Soil Mech Found Div ASCE, 793–812

  25. Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Geotechnique 50(4):449–460

    Article  Google Scholar 

  26. Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. J Eng Mech 138(3):263–275

    Article  Google Scholar 

  27. Li XS, Dafalias YF, Wang ZL (1999) State-dependent dilatancy in critical-state constitutive modeling of sand. Can Geotech J 36(4):599–611

    Article  Google Scholar 

  28. Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenviron Eng 124(12):1215–1217

    Article  Google Scholar 

  29. Ling HI, Liu HB (2003) Pressure-level dependency and densification behavior of sand through generalized plasticity model. J Eng Mech 129(8):851–860

    Article  Google Scholar 

  30. Ling HI, Yang ST (2006) Unified sand model based on the critical state and generalized plasticity. J Eng Mech 132(12):1380–1391

    Article  Google Scholar 

  31. Manzanal D (2008) Constitutive model based generalized plasticity theory and state parameters for satuated and unsaturated sands. Ph.D. Dissertation. Universidad Politécnica de Madrid, Madrid (In Spanish)

  32. Manzanal D, Fernández-Merodo JA, Pastor M (2010) Generalized plasticity state parameter-based model for saturated and unsaturated soils, Part 1: saturated state. Int J Numer Anal Methods Geomech 35(12):1347–1362

    Article  MATH  Google Scholar 

  33. Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. Geotechnique 47(2):255–272

    Article  Google Scholar 

  34. Mroz Z, Norris VA, Zienkiewicz OC (1979) Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils. Geotechnique 29:1–34

    Article  Google Scholar 

  35. Nova R (1982) A constitutive model for soil under monotonic and cyclic loading. In: Pande GN, Zienkiewicz OC (eds) Soil mechanics—transient and cyclic loads. Wiley, New York, pp 343–374

    Google Scholar 

  36. Osinov VA (2013) Application of a high-cycle accumulation model to the analysis of soil liquefaction around a vibrating pile toe. Acta Geotech 8(6):675–684

    Article  Google Scholar 

  37. Pastor M, Zienkiewicz OC, Chan AHC (1990) Generalized plasticity and the modeling of soil behavior. Int J Numer Anal Methods Geomech 14(3):151–190

    Article  MATH  Google Scholar 

  38. Pastor M, Zienkiewicz OC, Xu G-D, Peraire J (1993) Modelling of sand behaviour: cyclic loading, anisotropy and localization. In: Kolymbas D (ed) Modern approaches to plasticity. Elsevier, Amsterdam, pp 469–492

    Chapter  Google Scholar 

  39. Poulos SJ (1981) The steady state of deformation. J Geotech Eng Div 107(5):553–561

    Google Scholar 

  40. Roscoe KH, Schofield AN, Wroth CP (1958) On the yielding of soils. Geotechniqe 8(1):22–53

    Article  Google Scholar 

  41. Rowe PW (1962) The stress–dilatancy relation for static equilibrium of an assembly of particles in contact. Proc R Soc A269:500–527

    Article  Google Scholar 

  42. Sfriso A, Weber G (2010) Formulation and validation of a constitutive model for sands in monotonic shear. Acta Geotech 5(4):257–272

    Article  Google Scholar 

  43. Tatsuoka F (1972) A fundamental study of the behavior of sand by triaxial testing. Doctoral Thesis, University of Tokyo, Tokyo, Japan

  44. Tatsuoka F, Ishihara K (1974) Yielding of sand in triaxial compression. Soils Found 14(2):63–76

    Article  Google Scholar 

  45. Tatsuoka F, Ishihara K (1974) Drained deformation of sand under cyclic stresses reversing direction. Soils Found 14(3):51–65

    Article  Google Scholar 

  46. Tatsuoka F, Shibuya S (1991) Deformation characteristics of soils and rocks from field and laboratory tests. In: 9th Asian regional conference on soil mechanics and foundation engineering, Bangkok, pp 101–1077

  47. Tonni L, Cola S, Pastor M (2006) A generalized plasticity approach for describing the behaviour of silty soils forming the Venetian lagoon basin. In: 6th European conference on numerical methods in geotechnical engineering, London, pp 93–99

  48. Vaid YP, Chung EKF, Kuerbis RH (1990) Stress path and steady state. Can Geotech J 27:1–7

    Article  Google Scholar 

  49. Verdugo R, Ishihara K (1996) The steady state of sandy soils. Soils Found 36(2):81–91

    Article  Google Scholar 

  50. Wang ZL, Dafalias YF, Li XS, Makdisi FI (2002) State pressure index for modeling sand behavior. J Geotech Geoenviron Eng 128:511–519

    Article  Google Scholar 

  51. Willam KJ, Warnke EP (1971) Constitutive model for the triaxial behavior of concrete. Seminar on concrete structure subjected to triaxial stress. ISMES, Bergamo, Italy

  52. Yamamuro JA, Lade PV (1998) Steady-state concepts and static liquefaction of silty sands. J Geotech Geoenviron Eng 124:868–877

    Article  Google Scholar 

  53. Yin ZY, Xu Q, Hicher PY (2013) A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotech 8(5):509–523

    Article  Google Scholar 

  54. Zienkiewicz OC, Mróz Z (1984) Generalized plasticity formulation and applications to geomechanics. In: Desai CS, Gallagher RH (eds) Mechanics of engineering materials. Wiley, New York, pp 655–680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Oliaei.

Appendix

Appendix

The tensors \( \bar{\sigma }_{ij} \), \( \sigma_{ij} \) and \( n_{ij} \) can be rewritten as (decomposed into) their volumetric and deviatoric components:

$$ \bar{\sigma }_{ij} = \bar{S}_{ij} + \bar{p}\delta_{ij} $$
(51)
$$ \sigma_{ij} = S_{ij} + p\delta_{ij} $$
(52)
$$ n_{ij} = n^{\prime}_{ij} + n^{\prime\prime}\delta_{ij} $$
(53)

Using Eqs. (51), (52), (53) and Eq. (27), it can be written:

$$ \begin{aligned} & \bar{S}_{ij} + \bar{p}\delta_{ij} = S_{ij} + p\delta_{ij} + bn^{\prime}_{ij} + bn^{\prime\prime}\delta_{ij} \\ & \quad \Rightarrow \bar{S}_{ij} + \bar{p}\delta_{ij} = (S_{ij} + bn^{\prime}_{ij} ) + (p + bn^{\prime\prime})\delta_{ij} \\ \end{aligned} $$
(54)

Therefore:

$$ \bar{S}_{ij} = (S_{ij} + bn^{\prime}_{ij} ) $$
(55)
$$ \bar{p} = (p + bn^{\prime\prime}) $$
(56)

On the other hand, extending the bounding surface equation (Eq. 23):

$$ \bar{\sigma }_{ij} \bar{\sigma }_{ij} - 2\bar{p}\delta_{ij} \bar{\sigma }_{ij} + \bar{p}^{2} \delta_{ij} \delta_{ij} = \frac{2}{3}(M\bar{p})^{2} $$
(57)

Now, Eq. (27) is inserted into Eq. (57):

$$ \begin{aligned} & (\sigma_{ij} + bn_{ij} )(\sigma_{ij} + bn_{ij} ) - 2\bar{p}\delta_{ij} (\sigma_{ij} + bn_{ij} ) \\ & \quad + \bar{p}^{2} \delta_{ij} \delta_{ij} = \frac{2}{3}(M\bar{p})^{2} \\ \end{aligned} $$
(58)

So:

$$ \begin{aligned} & \sigma_{ij} \sigma_{ij} + 2bn_{ij} \sigma_{ij} + b^{2} n_{ij} n_{ij} - 2\bar{p}\delta_{ij} \sigma_{ij} - 2b\bar{p}\delta_{ij} n_{ij} \\ & \quad + (\delta_{ij} \delta_{ij} - \frac{2}{3}M^{2} )\bar{p}^{2} = 0 \\ \end{aligned} $$
(59)

Inserting Eq. (56) into Eq. (59), it can be obtained:

$$ \begin{aligned} & \sigma_{ij} \sigma_{ij} + 2bn_{ij} \sigma_{ij} + b^{2} n_{ij} n_{ij} - 2(p + bn^{\prime\prime})\delta_{ij} \sigma_{ij} \\ & \quad - 2b(p + bn^{\prime\prime})\delta_{ij} n_{ij} + (\delta_{ij} \delta_{ij} - \frac{2}{3}M^{2} )(p + bn^{\prime\prime})^{2} = 0 \\ \end{aligned} $$
(60)

Using Eq. (33), it can be written:

$$ \begin{aligned} & \sigma_{ij} \sigma_{ij} + 2bn_{ij} \sigma_{ij} + b^{2} n_{ij} n_{ij} - 2p\delta_{ij} \sigma_{ij} - 2bn^{\prime\prime}\delta_{ij} \sigma_{ij} \\ & \quad - 2bp\delta_{ij} n_{ij} - 2b^{2} n^{\prime \prime } \delta_{ij} n_{ij} + z(p^{2} + 2bn^{\prime \prime } p + b^{2} n^{\prime \prime 2} ) = 0 \\ \end{aligned} $$
(61)

Then:

$$ \begin{aligned} & b^{2} (n_{ij} n_{ij} - 2n^{\prime \prime } \delta_{ij} n_{ij} + zn^{\prime \prime 2} ) \\ & \quad + 2b(n_{ij} \sigma_{ij} - n^{\prime\prime}\delta_{ij} \sigma_{ij} - p\delta_{ij} n_{ij} + zn^{\prime\prime}p) \\ & \quad + (\sigma_{ij} \sigma_{ij} - 2p\delta_{ij} \sigma_{ij} + zp^{2} ) = 0 \\ \end{aligned} $$
(62)

Hence, according to Eqs. (29), (30) and (31), a quadratic equation is reached:

$$ Ab^{2} + 2Bb + C = 0 $$
(63)

Then, two values for b are obtained with solving Eq. (63):

$$ b = \frac{{ -\, B + \sqrt {B^{2} - AC} }}{A} $$
(64)
$$ b = \frac{{ - \,B - \sqrt {B^{2} - AC} }}{A} $$
(65)

Using Eq. (64) to calculate b, and put it into Eq. (27), the image stress \( \bar{\sigma }_{ij} \) will be achieved. If Eq. (65) is used to calculate b, Eq. (27) will give the supplement image stress \( \bar{\sigma }^{\prime}_{ij} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarzadeh, H., Oliaei, M. Development of a generalized model using a new plastic modulus based on bounding surface plasticity. Acta Geotech. 13, 925–941 (2018). https://doi.org/10.1007/s11440-017-0599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0599-0

Keywords

Navigation