Skip to main content
Log in

A generalized nonlinear failure criterion for frictional materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A generalized nonlinear failure criterion formulated in terms of stress invariants is proposed for describing the failure characteristics of different frictional materials. This failure criterion combines a power function and a versatile function in the meridian and deviatoric plane, respectively, which is a generalization of several classic criteria, including the Tresca, Drucker–Prager, Mohr–Coulomb, Lade–Duncan and Matsuoka–Nakai failure criterion. The procedure for determination of the strength parameters was demonstrated in detail. Comparisons between the failure criterion and experimental results were presented for uncemented/cemented Monterey sand, normally consolidated Fujinomori clay, rockfill, concrete, Mu-San sandstone and granite, which reveal that the proposed failure criterion captures experimental trend quite well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abbo AJ, Sloan SW (1995) A smooth hyperbolic approximation to the Mohr–Coulomb yield criterion. Comput Struct 54:427–441

    Article  MATH  Google Scholar 

  2. Al-Ajmi AM, Zimmerman RW (2005) Relation between the Mogi and the Coulomb failure criteria. Int J Rock Mech Min 42:431–439

    Article  Google Scholar 

  3. Argyris J, Faust G, Szimmat J, Warnke EP, Willam KJ (1974) Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl Eng Des 28:42–75

    Article  Google Scholar 

  4. Aubertin M, Li L, Simon R, Khalfi S (1999) Formulation and application of a short-term strength criterion for isotropic rocks. Can Geotech J 36:947–960

    Article  Google Scholar 

  5. Bardet J (1990) Lode dependences for isotropic pressure-sensitive elastoplastic materials. J Appl Mech 57:498–506

    Article  Google Scholar 

  6. Benz T, Schwab R (2008) A quantitative comparison of six rock failure criteria. Int J Rock Mech Min 45:1176–1186

    Article  Google Scholar 

  7. Benz T, Schwab R, Kauther RA, Vermeer PA (2008) A Hoek–Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min 45:210–222

    Article  Google Scholar 

  8. Bigoni D, Piccolroaz A (2004) Yield criteria for quasibrittle and frictional materials. Int J Solids Struct 41:2855–2878

    Article  MathSciNet  MATH  Google Scholar 

  9. Boswell LF, Chen Z (1987) A general failure criterion for plain concrete. Int J Solids Struct 23:621–630

    Article  MATH  Google Scholar 

  10. Colmenares LB, Zoback MD (2002) A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min 39:695–729

    Article  Google Scholar 

  11. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10:157–165

    Article  MathSciNet  MATH  Google Scholar 

  12. Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Geoenviron 106:1013–1035

    Google Scholar 

  13. Jiang J, Pietruszczak S (1988) Convexity of yield loci for pressure sensitive materials. Comput Geotech 5:51–63

    Article  Google Scholar 

  14. Kim MK, Lade PV (1984) Modelling rock strength in three dimensions. Int J Rock Mech Min Sci Geomech Abstr 21:21–33

    Article  Google Scholar 

  15. Kotsovos MD (1979) A mathematical description of the strength properties of concrete under generalized stress. Mag Concr Res 31:151–158

    Article  Google Scholar 

  16. Krenk S (1996) Family of invariant stress surfaces. J Eng Mech 122:201–208

    Article  Google Scholar 

  17. Lade PV (1977) Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int J Solids Struct 13:1019–1035

    Article  MATH  Google Scholar 

  18. Lade PV (1982) Three-parameter failure criterion for concrete. J Eng Mech Div 108:850–863

    Google Scholar 

  19. Lade PV (1984) Failure criterion for frictional materials. Wiley, London

    Google Scholar 

  20. Lade PV (1993) Rock strength criteria-the theories and evidence. Compr Rock Eng-Princ Pract Proj 1:255–284

    Google Scholar 

  21. Lade PV (2014) Estimating parameters from a single test for the three-dimensional failure criterion for frictional materials. J Geotech Geoenviron 140:04014038

    Article  Google Scholar 

  22. Lade PV, Duncan JM (1975) Elastoplastic stress-strain theory for cohesionless soil. J Geotech Geoenviron 101:1037–1053

    Google Scholar 

  23. Lee D, Juang CH, Chen J, Lin H, Shieh W (1999) Stress paths and mechanical behavior of a sandstone in hollow cylinder tests. Int J Rock Mech Min 36:857–870

    Article  Google Scholar 

  24. Lee D, Juang CH, Lin H (2002) Yield surface of Mu-San sandstone by hollow cylinder tests. Rock Mech Rock Eng 35:205–216

    Article  Google Scholar 

  25. Lin F, Bazant ZP (1986) Convexity of smooth yield surface of frictional material. J Eng Mech 112:1259–1262

    Article  Google Scholar 

  26. Liu M, Gao Y, Liu H (2012) A nonlinear Drucker–Prager and Matsuoka–Nakai unified failure criterion for geomaterials with separated stress invariants. Int J Rock Mech Min 50:1–10

    Article  Google Scholar 

  27. Liu MD, Carter JP (2003) General strength criterion for geomaterials. Int J Geomech 3:253–259

    Article  Google Scholar 

  28. Matsuoka H (1974) Stress-strain relationships of sands based on the mobilized plane. Soils Found 14:47–61

    Article  Google Scholar 

  29. Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. Proc JSCE, 59–70

    Google Scholar 

  30. Matsuoka H, Nakai T (1982) A new failure criterion for soils in three-dimensional stresses. In: Proceedings of international union of theoretical and applied mechanics (IUTAM) symposium on deformation and failure of granular materials, Delft, pp 253–263

  31. Mills LL, Zimmerman RM (1970) Compressive strength of plain concrete under multiaxial loading conditions. J ACI Proc 67:802–807

    Google Scholar 

  32. Mogi K (1967) Effect of the intermediate principal stress on rock failure. J Geophys Res 72:5117–5131

    Article  Google Scholar 

  33. Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76:1255–1269

    Article  Google Scholar 

  34. Nakai T, Matsuoka H (1986) A generalized elastoplastic constitutive model for clay in three-dimensional stresses. Soils Found 26:81–98

    Article  Google Scholar 

  35. Nakai T, Matsuoka H, Okuno N, Tsuzuki K (1986) True triaxial tests on normally consolidated clay and analysis of the observed shear behavior using elastoplastic constitutive models. Soils Found 26:67–78

    Article  Google Scholar 

  36. Nayak GC, Zienkiewicz OC (1972) Convenient form of stress invariants for plasticity. J Struct Div ASCE 98:949–954

    Google Scholar 

  37. Ottosen NS (1977) A failure criterion for concrete. Am Soc Civ Eng Eng Mech Div J

  38. Piccolroaz A, Bigoni D (2009) Yield criteria for quasibrittle and frictional materials: a generalization to surfaces with corners. Int J Solids Struct 46:3587–3596

    Article  MATH  Google Scholar 

  39. Podgórski J (1984) Limit state condition and the dissipation function for isotropic materials. Arch Mech 36(3):323–342

    Google Scholar 

  40. Podgórski J (1985) General failure criterion for isotropic media. J Eng Mech 111(2):188–201

    Article  Google Scholar 

  41. Reddy KR, Saxena SK (1993) Effects of cementation on stress-strain and strength characteristics of sands. Soils Found Tokyo 33:121–134

    Article  Google Scholar 

  42. Seow PEC, Swaddiwudhipong S (2005) Failure surface for concrete under multiaxial load—a unified approach. J Mater Civil Eng 17:219–228

    Article  Google Scholar 

  43. Shi WC (2008) True tri-axial tests on coarse-grained materials and investigation of constitutive model. Dissertation, Hohai University, Nanjing (in Chinese)

  44. Singh M, Raj A, Singh B (2011) Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min 48:546–555

    Article  Google Scholar 

  45. Van Eekelen H (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Met 4:89–101

    Article  MATH  Google Scholar 

  46. Wiebols GA, Cook N (1968) An energy criterion for the strength of rock in polyaxial compression. Int J Rock Mech Min Sci Geomech Abstr 5:529–549

    Article  Google Scholar 

  47. Willam KJ, Warnke EP (1975) Constitutive model for the triaxial behavior of concrete. In Proceedings, international association for bridge and structural engineering, ISMES, Bergamo, Italy. pp 1–30

  48. Yao Y, Hu J, Zhou A, Luo T, Wang N (2015) Unified strength criterion for soils, gravels, rocks, and concretes. Acta Geotechnica 10:749–759

    Article  Google Scholar 

  49. Yu M, Zan Y, Zhao J, Yoshimine M (2002) A unified strength criterion for rock material. Int J Rock Mech Min 39:975–989

    Article  Google Scholar 

  50. Zhou S (1994) A program to model the initial shape and extent of borehole breakout. Comput Geosci-UK 20:1143–1160

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Beijing Training Project for the Leading Talent in S & T (Z151100000315014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihuai Zhang.

Appendix : Proof of the requirements for smoothness and convexity of the new two-parameter deviatoric function

Appendix : Proof of the requirements for smoothness and convexity of the new two-parameter deviatoric function

The first and second derivative of Eq. (14) can be expressed as follows:

$$g^{\prime}(\theta_{\sigma } ) = - \sin \left( {\alpha \frac{\pi }{3} - \frac{1}{3}\sin^{ - 1} A} \right)\frac{{A\cos 3\theta_{\sigma } }}{{\sqrt {1{ - }A^{2} \sin^{2} 3\theta_{\sigma } } }}\frac{{\cos \left[ {\alpha \frac{\pi }{3} + \frac{1}{3}\sin^{ - 1} (A\sin 3\theta_{\sigma } )} \right]}}{{\sin^{2} \left[ {\alpha \frac{\pi }{3} + \frac{1}{3}\sin^{ - 1} (A\sin 3\theta_{\sigma } )} \right]}}$$
(30)
$$g^{\prime\prime}(\theta_{\sigma } ) = \sin \left( {\alpha \frac{\pi }{3} - \frac{1}{3}\sin^{ - 1} A} \right)\left[ \begin{aligned} \frac{{3A\sin 3\theta_{\sigma } (1 - A^{2} )}}{{(1 - A^{2} \sin^{2} 3\theta_{\sigma } )^{3/2} }}\frac{{\cos \left[ {\alpha \frac{\pi }{3} + \frac{1}{3}\sin^{ - 1} (A\sin 3\theta_{\sigma } )} \right]}}{{\sin^{2} \left[ {\alpha \frac{\pi }{3} + \frac{1}{3}\sin^{ - 1} (A\sin 3\theta_{\sigma } )} \right]}} \hfill \\ + \frac{{A^{2} \cos^{2} 3\theta_{\sigma } }}{{1 - A^{2} \sin^{2} 3\theta_{\sigma } }}\frac{{1 + \cos^{2} \left[ {\alpha \frac{\pi }{3} + \frac{1}{3}\sin^{ - 1} (A\sin 3\theta_{\sigma } )} \right]}}{{\sin^{3} \left[ {\alpha \frac{\pi }{3} + \frac{1}{3}\sin^{ - 1} (A\sin 3\theta_{\sigma } )} \right]}} \hfill \\ \end{aligned} \right]$$
(31)

Apparently, when \(\theta_{\sigma } = \pm 30^{ \circ }\),\(g^{\prime}( \pm 30^{ \circ } ) = 0\) and \(A \ne 1\), which means the new two-parameter deviatoric function is smooth at the corner.

On the other hand, through substitution of Eqs. (14), (30), (21) into Eq. (5), thus yielding

$$1 - \frac{{3A\sin 3\theta_{\sigma } }}{{\sqrt {1{ - }A^{2} \sin^{2} 3\theta_{\sigma } } }}\frac{{\cos \left[ {\alpha \frac{\pi }{3} + \frac{1}{3}\sin^{ - 1} (A\sin 3\theta_{\sigma } )} \right]}}{{\sin \left[ {\alpha \frac{\pi }{3} + \frac{1}{3}\sin^{ - 1} (A\sin 3\theta_{\sigma } )} \right]}} \ge 0$$
(32)

where \(\theta_{\sigma } \in \left[ { - 30^{ \circ } ,30^{ \circ } } \right]\), and let \(x = \sin^{ - 1} (A\sin 3\theta_{\sigma } )\), then Eq. (32) can be transformed into

$$2\sin \left( {\alpha \frac{\pi }{3} - \frac{2}{3}x} \right) - \sin \left( {\alpha \frac{\pi }{3} + \frac{4}{3}x} \right) \ge 0$$
(33)

where \(x \in \left[ { - \sin^{ - 1} A,\sin^{ - 1} A} \right]\) and then can be expressed as:

$$\frac{{ - 2\cos^{2} k + 2\cos k + 1}}{2\sin k(1 + \cos k)}\sin \left( {\alpha \frac{\pi }{3}} \right) - \cos \left( {\alpha \frac{\pi }{3}} \right) \ge 0$$
(34)

with \(k = \frac{2}{3}x \in \left[ { - \frac{2}{3}\sin^{ - 1} A,\frac{2}{3}\sin^{ - 1} A} \right]\), and an inequality can be obtained as follows:

$$\alpha \ge \frac{3}{\pi }\tan^{ - 1} \left[ {\frac{2\sin k(1 + \cos k)}{{ - 2\cos^{2} k + 2\cos k + 1}}} \right]$$
(35)

where the right function of inequality sign in Eq. (35) is monotonically increasing with \(k\) and varies within the interval \(\left[ { - 1,1} \right]\), thus yielding

$$\alpha \ge 1$$
(36)

which means that the new two-parameter deviatoric function is convex as long as Eq. (36) is satisfied and \(A \in \left[ {0,1} \right]\).

As for the aspect ratio \(K\), which varies within the interval \(\left[ {0.5,1} \right]\), the upper limit value of \(\alpha\) can be obtained when \(A \in \left[ {0,1} \right]\)

$$\alpha \le 1.5$$
(37)

Finally, it is necessary to emphasize that within the interval of \(\alpha \in \left[ {1,1.5} \right]\), the new two-parameter deviatoric function is convex independently of the values assumed by \(A\). Besides, one can achieve the same effect as the Bigoni–Piccolroaz dependence simply by widening the interval of \(\alpha\) to \(\left[ {1,2} \right]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zhang, S., Guo, C. et al. A generalized nonlinear failure criterion for frictional materials. Acta Geotech. 12, 1353–1371 (2017). https://doi.org/10.1007/s11440-017-0532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0532-6

Keywords

Navigation