Skip to main content
Log in

Fully coupled solution for the consolidation of poroelastic soil around elastoplastic stone column

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The paper presents a new fully coupled elastoplastic solution for the response of a poroelastic thick-walled soil cylinder around an elastoplastic stone column using Biot’s (J Appl Phys 12:155–164, 1941) consolidation theory. A unit cell concept is adopted for the soil–stone column analysis, and the problem is formulated in cylindrical coordinates. Expressions for excess pore pressure, stresses and displacements in the Laplace domain are derived analytically taking into account elastic or plastic behavior of the column. The inverse of the Laplace transform is evaluated numerically using an efficient scheme to obtain the final elastoplastic solution in time domain. The validity of the new solution has been checked against finite element solution and compared with some previously developed analytical methods for the stone column analysis. The results showing settlements, change in excess pore pressures and stresses with time are presented in terms of time factor. The proposed solution can be used to calculate transient state of settlements, distribution of deformations, stresses and excess pore pressures in soil and column under instantaneous or time-dependent monotonically increasing rigid vertical load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\( A_{j} ,A_{j}^{i} \) :

Coefficients

A r :

Area replacement ratio

B :

Skempton parameter

B 1 :

Unit cell dimensionless coefficient

B 2 :

Unit cell coefficient (m)

c :

Diffusivitiy coefficient (m2/s)

C R :

Radial coefficient of consolidation (m2/s)

C 0 :

Unit cell coefficient (m4 Pa)

C 1 :

Unit cell coefficient (m3 Pa2)

C 2 :

Unit cell coefficient (m4 Pa2)

E, E c :

Soil and stone column Young modulus (Pa)

E v, E h :

Vertical/horizontal Young modulus (Pa)

D c :

Material constant—stone column (Pa)

D 0 :

Unit cell constant (m4 Pa)

D 1 :

Unit cell constant (m3 Pa)

D 2 :

Unit cell constant (m2 Pa)

G :

Shear modulus (Pa)

I 0 :

Modified Bessel function of the first kind

k :

Hydraulic conductivity (m/s)

K :

Soil bulk modulus (Pa)

K ini :

Initial lateral pressure coefficient

K 0 :

Modified Bessel function of the second kind

K w :

Water bulk modulus (Pa)

K ϕ :

Passive earth pressure coefficient

K Ψ :

Dilation constant

\( K^{\prime }\) :

Stress ratio

L :

Column length (m)

M :

Biot modulus (Pa)

N :

Replacement ratio

n :

Porosity

p :

Excess pore pressure (Pa)

\( \bar{p} \) :

Average excess pore pressure (Pa)

\( {\bar{p}}_{0} \) :

Initial average pore pressure (Pa)

r :

Radial distance (m)

R a :

Stone column radius (m)

R b :

Unit cell radius (m)

s :

Laplace transform parameter

S :

Storage coefficient (1/Pa)

SCF:

Stress concentration factor

t :

Time (s)

T R :

Time factor

u r :

Radial displacement (m)

u z :

Vertical displacement (m)

U z :

Surface settlement (m)

U p :

Average degree of pore pressure dissipation

z :

Depth (m)

q, q 0 :

Transient and final load (Pa)

α :

Biot’s effective stress coefficient

γ :

Unit weight (N/m3)

δ :

Load proportionality factor

ε :

Volumetric strain

ε rr :

Principal radial strain

ε θθ :

Principal tangential strain

ε zz :

Principal vertical strain

κ :

Permeability (m2)

ζ :

Volumetric variation of pore fluid content

η :

Poroelastic stress coefficient

λ :

Lamé parameter

μ :

Pore fluid viscosity (Pa s)

ν :

Poisson’s ratio

ν u :

Poisson’s ratio for undrained conditions

ξ :

Dimensionless radial coordinate

σ rc :

Radial stress–stone column (Pa)

σ rr :

Principal radial stress (Pa)

σ θθ :

Principal tangential stress (Pa)

σ zc :

Radial stress–stone column (Pa)

σ zz :

Principal vertical stress (Pa)

ϕ :

Friction angle (°)

ψ :

Dilatancy angle (°)

a, b:

Inner and outer radius of the thick-walled cylinder

c, w:

Column, water

ini:

Initial value

e, p:

Elastic, plastic

\( \bar{} \) (upper bar):

Average value along the radius

\( {\prime } \) (apostrophe):

Effective value

\( \tilde{} \) (tilde overbar):

Laplace transform

References

  1. Abate J, Valkó PP (2004) Multi-precision Laplace transform inversion. Int J Numer Methods Eng 60(5–7):979–993

    Article  MATH  Google Scholar 

  2. Aboshi H, Ichimoto E, Enoki M, Harada K (1979) The “compozer”: a method to improve characteristics of soft clays by inclusion of large diameter sand columns. In: Paper presented at the international conference on soil reinforcement: reinforced earth and other techniques (Coll. Int. Renforcements des Sols.). Paris, pp 211–216

  3. Balaam NP, Booker JR (1981) Analysis of rigid rafts supported by granular piles. Int J Numer Anal Methods Geomech 5(4):379–403

    Article  Google Scholar 

  4. Balaam NP, Booker JR (1985) Effect of stone column yield on settlement of rigid foundations in stabilized clay. Int J Numer Anal Methods Geomech 9(4):331–351

    Article  Google Scholar 

  5. Barron RA (1948) Consolidation of fine-grained soils by drain wells. Trans ASCE 2346:718–754

    Google Scholar 

  6. Baumann V, Bauer GEA (1974) The performance of foundations on various soils stabilized by the vibro-compaction method. Can Geotech J 11(4):509–530

    Article  Google Scholar 

  7. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  Google Scholar 

  8. Borges JL, Domingues TS, Cardoso AS (2009) Embankments on soft soil reinforced with stone columns: numerical analysis and proposal of a new design method. Geotech Geol Eng 27(6):667–679

    Article  Google Scholar 

  9. Brinkgreve RBJ, Swolfs WM, Engin E (2011) PLAXIS 2D 2010 Material Models Manual. PLAXIS B.V

  10. Castro J, Sagaseta C (2009) Consolidation around stone columns. Influence of column deformation. Int J Numer Anal Methods Geomech 33(7):851–877

    Article  MATH  Google Scholar 

  11. Castro J, Sagaseta C (2011) Consolidation and deformation around stone columns: numerical evaluation of analytical solutions. Comput Geotech 38(3):354–362

    Article  Google Scholar 

  12. Castro J, Sagaseta C (2013) Influence of elastic strains during plastic deformation of encased stone columns. Geotext Geomembr 37:45–53

    Article  Google Scholar 

  13. Cheng A-HD, Abousleiman Y, Roegiers JC (1993) Review of some poroelastic effects in rock mechanics. Int J Rock Mech Min 30:1119–1126

    Article  Google Scholar 

  14. Cui L, Abousleiman Y (2001) Time-dependent poromechanical responses of saturated cylinders. J Eng Mech ASCE 127:391–398

    Article  Google Scholar 

  15. Detournay E, Cheng AHD (1993) Fundamentals of poroelasticity. Comprehensive rock engineering, vol 2. Pergamon, New York, pp 113–171

    Google Scholar 

  16. Goughnour RR, Bayuk AA (1979) Analysis of stone column-soil matrix interaction under vertical load. In: Paper presented at the international conference on soil reinforcement: reinforced earth and other techniques (Coll. Int. Renforcements des Sols). Paris, pp 279–285

  17. Han J, Ye SL (2001) Simplified method for consolidation rate of stone column reinforced foundations. J Geotech Geoenviron Eng 127(7):597–603

    Article  Google Scholar 

  18. Hansbo, S (1981) Consolidation of fine-grained soils by prefabricated drains. In: Proceedings of the 10th international conference on soil mechanics and foundation engineering, vol 3. Stockholm, pp 12–22

  19. Jourine S, Valkó PP, Kronenberg AK (2004) Modelling poroelastic hollow cylinder experiments with realistic boundary conditions. Int J Numer Anal Methods Geomech 28:1189–1205

    Article  MATH  Google Scholar 

  20. Mathematica Information Center Mathematica (2002) http://library.wolfram.com/database/MathSource/4738/

  21. Najjar SS (2013) A state-of-the-art review of stone/sand-column reinforced clay systems. Geotech Geol Eng 31(2):355–386

    Article  Google Scholar 

  22. Priebe HJ (1976) Evaluation of the settlement reduction of a foundation improved by Vibro-replacement. Bautechnik 2:160–162

    Google Scholar 

  23. Priebe HJ (1995) The design of vibro replacement. Ground Eng 28(10):31–37

    Google Scholar 

  24. Pulko B, Majes B (2005) Simple and accurate prediction of settlements of stone column reinforced soil. In: Proceedings of the 16th international conference on soil mechanics and foundation engineering, vol 3. Osaka, pp 1401–1404

  25. Pulko B, Majes B, Logar J (2011) Geosynthetic-encased stone columns: analytical calculation model. Geotext Geomembr 29(1):29–39

    Article  Google Scholar 

  26. Sexton B, McCabe BA, Castro J (2013) Appraising stone column settlement prediction methods using finite element analyses. Acta Geotech 9:993–1011

    Article  Google Scholar 

  27. Skempton AW (1954) The pore pressure coefficients A and B. Géotechnique 4:143–147

    Article  Google Scholar 

  28. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  29. Valkó PP, Abate J (2004) Comparison of sequence accelerators for the Gaver method of numerical Laplace transform inversion. Comput Math Appl 48(3–40):629–636

    Article  MathSciNet  MATH  Google Scholar 

  30. Van Impe WF, Madhav MR (1992) Analysis and settlement of dilating stone column reinforced soil. Oesterr Ing Archit Z 137(3):114–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boštjan Pulko.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulko, B., Logar, J. Fully coupled solution for the consolidation of poroelastic soil around elastoplastic stone column. Acta Geotech. 12, 869–882 (2017). https://doi.org/10.1007/s11440-016-0484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0484-2

Keywords

Navigation