Skip to main content
Log in

A robust numerical framework for simulating localized failure and fracture propagation in frictional materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A computationally robust framework for simulating geomaterial failure patterns is presented in this paper. Finite element simulations which feature the use of embedded discontinuities to track material failure are known to suffer from convergence issues due to a lack of robustness. Oftentimes, complex time step-cutting schemes or arc-length methods are required in order to achieve convergence. This may invariably limit the complexity of constitutive models available for use in tracking nonlinear material behavior. To this end, we use an implicit–explicit integration scheme [Impl–Ex (Oliver et al. in Comput Methods Appl Mech Eng 195(52):7093–7114, 2006)] coupled with a novel constitutive model which allows for combined opening and shearing displacement in tension, as well as frictional sliding in compression. We show that this framework is suitable for capturing complex fracture patterns in geomaterial structures without the need for elaborate continuance schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Alfaiate J, Wells GN, Sluys LJ (2002) On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture. Eng Fract Mech 69(6):661–686

    Article  Google Scholar 

  2. Ayatollahi MR, Sistaninia M (2011) Mode II fracture study of rocks using Brazilian disk specimens. Int J Rock Mech Min Sci 48(5):819–826

    Article  Google Scholar 

  3. Belytschko T, Fish J, Engelmann BE (1988) A finite element with embedded localization zones. Comput Methods Appl Mech Eng 70(1):59–89

    Article  MATH  Google Scholar 

  4. Blanco S, Goicolea JM, Polindara C (2012) A robust numerical framework for the analysis of material failure of fiber reinforced soft tissue. J Biomech 45(Supplement 1):S28

    Article  Google Scholar 

  5. Borja RI (2000) A finite element model for strain localization analysis of strongly discontinuous fields based on standard galerkin approximation. Comput Methods Appl Mech Eng 190(11):1529–1549

    Article  MATH  Google Scholar 

  6. Borja RI, Foster CD (2007) Continuum mathematical modeling of slip weakening in geological systems. J Geophys Res Solid Earth 112(B4):B04301-1–B04301-12

    Article  Google Scholar 

  7. Borja RI, Regueiro RA (2001) Strain localization in frictional materials exhibiting displacement jumps. Comput Methods Appl Mech Eng 190(20–21):2555–2580

    Article  MATH  Google Scholar 

  8. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938

    Article  MATH  Google Scholar 

  9. Cornelissen HAW, Hordijk DA, Reinhardt HW (1986) Experimental determination of crack softening characteristics of normalweight and lightweight concrete. Heron 31(2):45–56

    Google Scholar 

  10. de Borst R, Remmers JJC, Needleman A (2006) Mesh-independent discrete numerical representations of cohesive-zone models. Eng Fract Mech 73(2):160–177

    Article  Google Scholar 

  11. Dieterich HJ, Linker MF (1992) Fault stability under conditions of variable normal stress. Geophys Res Lett 19(16):1691–1694

    Article  Google Scholar 

  12. Foster CD, Borja RI, Regueiro RA (2007) Embedded strong discontinuity finite elements for fractured geomaterials with variable friction. Int J Numer Methods Eng 72(5):549–581

    Article  MathSciNet  MATH  Google Scholar 

  13. Foster CD, Regueiro RA, Fossum AF, Borja RI (2005) Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials. Comput Methods Appl Mech Eng 194(50–52):5109–5138

    Article  MATH  Google Scholar 

  14. Guinea GV, Planas J, Elices M (1994) A general bilinear fit for the softening curve of concrete. Mater Struct 27(2):99–105

    Article  Google Scholar 

  15. Hill R (1962) Acceleration waves in solids. J Mech Phys Solids 10(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  16. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  17. Huespe AE, Oliver J, Mora DF (2013) Computational modeling of high performance steel fiber reinforced concrete using a micromorphic approach. Comput Mech 52(6):1243–1264

    Article  MATH  Google Scholar 

  18. Ida Y (1972) Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J Geophys Res 77(20):3796–3805

    Article  Google Scholar 

  19. Jirásek M (2000) Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Mech Eng 188(1–3):307–330

    Article  MATH  Google Scholar 

  20. Jirásek M, Belytschko T (2002) Computational resolution of strong discontinuities. In: Proceedings of fifth world congress on computational mechanics, WCCM V, Vienna University of Technology, Austria

  21. Mair K, Abe S (2011) Breaking up: comminution mechanisms in sheared simulated fault gouge. Pure Appl Geophys 168(12):2277–2288

    Article  Google Scholar 

  22. Oliver J, Diaz G, Manzoli OL, Huespe AE (2008) Three-dimensional analysis of reinforced concrete members via embedded discontinuity finite elements. Revista IBRACON de Estruturas e Materiais 1:58–83 03

    Article  Google Scholar 

  23. Mosler J, Meschke G (2003) 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations. Int J Numer Methods Eng 57(11):1553–1576

    Article  MATH  Google Scholar 

  24. Motamedi MH, Foster CD (2015) An improved implicit numerical integration of a non-associated, three-invariant cap plasticity model with mixed isotropic–kinematic hardening for geomaterials. Int J Numer Anal Methods Geomech 39(17):1853–1883

    Article  Google Scholar 

  25. Oliver J (2000) On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations. Int J Solids Struct 37(48–50):7207–7229

    Article  MathSciNet  MATH  Google Scholar 

  26. Oliver J, Huespe AE, Samaniego E (2003) A study on finite elements for capturing strong discontinuities. Int J Numer Methods Eng 56(14):2135–2161

    Article  MathSciNet  MATH  Google Scholar 

  27. Oliver J, Huespe AE (2004) Theoretical and computational issues in modelling material failure in strong discontinuity scenarios. Comput Methods Appl Mech Eng 193(27–29):2987–3014

    Article  MATH  Google Scholar 

  28. Oliver J, Huespe AE, Blanco S, Linero DL (2006) Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach. Comput Methods Appl Mech Eng 195(52):7093–7114

    Article  MATH  Google Scholar 

  29. Oliver J, Huespe AE, Blanco S, Linero DL (2007) Evolving material discontinuities: numerical modeling by the continuum strong discontinuity approach (CSDA). In: Combescure A, De Ren B, Belytschko T (eds) IUTAM symposium on discretization methods for evolving discontinuities. IUTAM bookseries, vol 5. Springer, Berlin, pp 123–138

    Chapter  Google Scholar 

  30. Oliver J, Huespe AE, Cante JC (2008) An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems. Comput Methods Appl Mech Eng 197(21–24):1865–1889

    Article  MATH  Google Scholar 

  31. Oliver J, Linero DL, Huespe AE, Manzoli OL (2008) Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach. Comput Methods Appl Mech Eng 197(5):332–348

    Article  MATH  Google Scholar 

  32. Ortiz M, Leroy Y, Needleman A (1987) A finite element method for localized failure analysis. Comput Methods Appl Mech Eng 61(2):189–214

    Article  MATH  Google Scholar 

  33. Bitencourt LAG, Bittencourt T Jr, Prazeres PGC, Manzoli OL (2015) A modified implicit–explicit integration scheme: an application to elastoplasticity problems. J Braz Soc Mech Sci Eng 38:151–161

    Google Scholar 

  34. Futai MM, Bittencourt T, Manzoli OL, Prazeres PGC (2015) Use of the impl-ex integration scheme to simulate sequential excavation with the finite element method. In: Proceedings of the World Tunnel Congress 2014—Tunnels for a better Life. Foz do Iguau, Brazil

  35. Regueiro RA, Foster CD (2011) Bifurcation analysis for a rate-sensitive, non-associative, three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials: Part i. small strain. Int J Numer Anal Methods Geomech 35(2):201–225

    Article  MATH  Google Scholar 

  36. Regueiro RA, Borja RI (1999) A finite element model of localized deformation in frictional materials taking a strong discontinuity approach. Finite Elem Anal Des 33(4):283–315

    Article  MATH  Google Scholar 

  37. Regueiro RA, Borja RI (2001) Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity. Int J Solids Struct 38(21):3647–3672

    Article  MATH  Google Scholar 

  38. Reinhardt H (1984) Fracture mechanics of fictitious crack propagation in concrete. Heron 29(2):3–42

    Google Scholar 

  39. Rinehart AJ, Bishop JE, Dewers T (2015) Fracture propagation in Indiana limestone interpreted via linear softening cohesive fracture model. J Geophys Res Solid Earth 120(4):2292–2308

    Article  Google Scholar 

  40. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394

    Article  Google Scholar 

  41. Sanchez PJ, Huespe AE, Oliver J (2008) On some topics for the numerical simulation of ductile fracture. Int J Plast 24(6):1008–1038

    Article  MATH  Google Scholar 

  42. Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12(5):277–296

    Article  MathSciNet  MATH  Google Scholar 

  43. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8):1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  44. Sluys LJ, Berends AH (1998) Discontinuous failure analysis for mode-I and mode-II localization problems. Int J Solids Struct 35(31–32):4257–4274

    Article  MATH  Google Scholar 

  45. Tresca MH (1878) On further applications of the flow of solids. J Frankl Inst 106(5):326–334

    Article  Google Scholar 

  46. Wells GN, Sluys LJ (2000) Application of embedded discontinuities for softening solids. Eng Fract Mech 65(2–3):263–281

    Article  Google Scholar 

  47. Wu T, Wriggers P (2015) Multiscale diffusion–thermal–mechanical cohesive zone model for concrete. Comput Mech 55:999–1016

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang Z, Frank XX (2008) A heterogeneous cohesive model for quasi-brittle materials considering spatially varying random fracture properties. Comput Methods Appl Mech Eng 197(45–48):4027–4039

    Article  MATH  Google Scholar 

  49. Yin A, Yang X, Gao H, Zhu H (2012) Tensile fracture simulation of random heterogeneous asphalt mixture with cohesive crack model. Eng Fract Mech 92:40–55

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the National Science Foundation, Grant No. NSF-CMMI 1030398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Foster.

Appendices

Appendix 1: Slip algorithms for both newly localized band and preexisting slip on band

See Boxes 1 and 2.

Box 1 Slip algorithm for a newly localized element
Box 2 Slip algorithm for an element which has preexisting slip on the band

Appendix 2: Derivatives of the yield functions

The gradients of the yield functions are as follows:

$$\begin{aligned} \frac{ \partial \Phi _1}{\partial \zeta _n}& = \frac{\partial \sigma }{\partial \zeta _n} - \left[ \zeta _n\frac{\partial k_n}{\partial \zeta _n} + k_n \right] \end{aligned}$$
(10.1)
$$\begin{aligned} \frac{ \partial \Phi _1}{\partial \zeta _s}& = \frac{\partial \sigma }{\partial \zeta _s} - \zeta _n\frac{\partial k_n}{\partial \zeta _s} \end{aligned}$$
(10.2)
$$\begin{aligned} \frac{\partial \Phi _2}{\partial \zeta _n}& = \frac{\partial \tau }{\partial \zeta _n} - \zeta _s\frac{\partial k_s}{\partial \zeta _n} \end{aligned}$$
(10.3)
$$\begin{aligned} \frac{\partial \Phi _2}{\partial \zeta _s}& = \frac{\partial \tau }{\partial \zeta _n} - \left[ \zeta _s\frac{\partial k_s}{\partial \zeta _s} + k_s \right] \end{aligned}$$
(10.4)

where

$$\begin{aligned} \frac{\partial k_s}{\partial \zeta _n} = \left\{ \begin{array}{lll} - \dfrac{ \alpha _{\zeta }^{2} c_0}{\zeta _c^3} \zeta _n &\quad \texttt {if} & \zeta _{\mathrm{eq}} = \zeta _c \\ 0 &\quad \texttt {if} & \zeta _{\mathrm{eq}} < \zeta _c \end{array} \right. \end{aligned}$$
(10.5)
$$\begin{aligned} \frac{\partial k_s}{\partial \zeta _s} = \left\{ \begin{array}{lll} - \dfrac{ c_0}{\zeta _c^3} \zeta _s & \quad \texttt {if} & \zeta _{\mathrm{eq}} = \zeta _c \\ 0 & \quad \texttt {if} & \zeta _{\mathrm{eq}} < \zeta _c \end{array} \right. \end{aligned}$$
(10.6)
$$\begin{aligned} \frac{\partial k_n}{\partial \zeta _n}& = \frac{\alpha _\zeta }{\alpha _\sigma }\frac{\partial k_s}{\partial \zeta _n} \end{aligned}$$
(10.7)
$$\begin{aligned} \frac{\partial k_n}{\partial \zeta _s}& = \frac{\alpha _\zeta }{\alpha _\sigma }\frac{\partial k_s}{\partial \zeta _s} \end{aligned}$$
(10.8)

To determine the derivatives of the bulk stresses with respect to the jumps, recall

$$\begin{aligned} {\varvec{\sigma }}_{n+1} = {\varvec{\sigma }}_n + {\varvec{c}}^e : \Delta {\varvec{\epsilon }}^{\mathrm {conf}} - {\varvec{c}}^e : \left( \Delta {\varvec{\zeta }}\otimes \nabla f^h \right) ^s \end{aligned}$$
(10.9)

Hence,

$$\begin{aligned} \frac{\partial {\varvec{\sigma }}}{\partial {\varvec{\zeta }}_n}& = - {\varvec{c}}^e : \left( {\varvec{n}}\otimes \nabla f^h \right) ^s \end{aligned}$$
(10.10)
$$\begin{aligned} \frac{\partial {\varvec{\sigma }}}{\partial {\varvec{\zeta }}_s}& = - {\varvec{c}}^e : \left( {\varvec{l}}\otimes \nabla f^h \right) ^s \end{aligned}$$
(10.11)

and therefore

$$\begin{aligned} \frac{\partial \sigma }{\partial {\varvec{\zeta }}_n}& = - \left( {\varvec{n}}\otimes {\varvec{n}}\right) : {\varvec{c}}^e : \left( {\varvec{n}}\otimes \nabla f^h \right) ^s \end{aligned}$$
(10.12)
$$\begin{aligned} \frac{\partial \sigma }{\partial {\varvec{\zeta }}_s}& = - \left( {\varvec{n}}\otimes {\varvec{n}}\right) : {\varvec{c}}^e : \left( {\varvec{l}}\otimes \nabla f^h \right) ^s \end{aligned}$$
(10.13)
$$\begin{aligned} \frac{\partial \tau }{\partial {\varvec{\zeta }}_n}& = - \left( {\varvec{n}}\otimes {\varvec{l}}\right) ^s : {\varvec{c}}^e : \left( {\varvec{n}}\otimes \nabla f^h \right) ^s \end{aligned}$$
(10.14)
$$\begin{aligned} \frac{\partial \tau }{\partial {\varvec{\zeta }}_s}& = - \left( {\varvec{n}}\otimes {\varvec{l}}\right) ^s : {\varvec{c}}^e : \left( {\varvec{l}}\otimes \nabla f^h \right) ^s \end{aligned}$$
(10.15)

Appendix 3: Derivation of the effective algorithmic operator

The effective algorithmic operator is defined as

$$\begin{aligned} {\varvec{C}}^{\mathrm {eff}}_{n+1} = \frac{\partial \tilde{{\varvec{\sigma }}}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}} \end{aligned}$$
(11.1)

by taking the derivative of the semi-implicit stress in Eq. (6.15) with respect to the implicit strain, we have the following:

$$\begin{aligned} \frac{\partial \tilde{{\varvec{\sigma }}}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}} &=\frac{\partial {\varvec{\sigma }}_{n}}{\partial {\varvec{\epsilon }}_{n+1}} + {\varvec{c}}^{e}:\frac{\partial \left( {\varvec{\epsilon }}_{n+1} - {\varvec{\epsilon }}_{n}\right) }{\partial {\varvec{\epsilon }}_{n+1}}\\&\quad- \Delta \tilde{\lambda }_{n+1}{\varvec{c}}^{e}:\frac{\partial }{\partial {\varvec{\epsilon }}_{n+1}}\left( \frac{\partial g\left( \tilde{{\varvec{\sigma }}}_{n+1}\right) }{\partial \tilde{{\varvec{\sigma }}}_{n+1} }\right) \\\\ &={\varvec{c}}^{e}:\frac{\partial {\varvec{\epsilon }}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}} - \Delta \tilde{\lambda }_{n+1}{\varvec{c}}^{e}:\tilde{{\varvec{A}}}_{n+1}:\frac{\partial \tilde{{\varvec{\sigma }}}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}} \end{aligned}$$
(11.2)

where

$$\begin{aligned} \tilde{{\varvec{A}}}_{n+1} = \frac{\partial ^{2} g\left( \tilde{{\varvec{\sigma }}}_{n+1}\right) }{\partial \tilde{{\varvec{\sigma }}}_{n+1}\otimes \partial \tilde{{\varvec{\sigma }}}_{n+1}} \end{aligned}$$
(11.3)

Noting that \({\varvec{c}}^{e}:\frac{\partial {\varvec{\epsilon }}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}} = {\varvec{c}}^{e}:{\varvec{I}}= {\varvec{c}}^{e}\), we group terms and factor:

$$\begin{aligned} \frac{\partial \tilde{{\varvec{\sigma }}}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}}&= {\varvec{c}}^{e} - \Delta \tilde{\lambda }_{n+1}{\varvec{c}}^{e}:\tilde{{\varvec{A}}}_{n+1}:\frac{\partial \tilde{{\varvec{\sigma }}}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}}\\ \\ {\varvec{c}}^{e}&= \frac{\partial \tilde{{\varvec{\sigma }}}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}} + \Delta \tilde{\lambda }_{n+1}{\varvec{c}}^{e}:\tilde{{\varvec{A}}}_{n+1}:\frac{\partial \tilde{{\varvec{\sigma }}}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}}\\ \\ {\varvec{c}}^{e}&= \left( {\varvec{I}}+ \Delta \tilde{\lambda }_{n+1}{\varvec{c}}^{e}:\tilde{{\varvec{A}}}_{n+1}\right) :\frac{\partial \tilde{{\varvec{\sigma }}}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}} \end{aligned}$$

finally

$$\begin{aligned} \frac{\partial \tilde{{\varvec{\sigma }}}_{n+1}}{\partial {\varvec{\epsilon }}_{n+1}} = \left( {\varvec{I}}+ \Delta \tilde{\lambda }_{n+1} {\varvec{c}}^{e}:\tilde{{\varvec{A}}}_{n+1}\right) ^{-1}:{\varvec{c}}^{e} = {\varvec{C}}^{\mathrm {eff}}_{n+1} \end{aligned}$$
(11.4)

The calculation in Eq. 11.4 is possible only if the quantities are in matrix form, and hence, the fourth-order symmetric identity tensor, \({\varvec{I}}\), must be written as the identity matrix given by

$$\begin{aligned} {\varvec{I}}= \begin{bmatrix} 1&\quad 0&\quad 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 1&\quad 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 1&\quad 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad \frac{1}{2}&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad \frac{1}{2}&\quad 0\\ 0&\quad 0&\quad 0&\quad 0&\quad 0&\quad \frac{1}{2}\\ \end{bmatrix} \end{aligned}$$
(11.5)

and additionally, \({\varvec{c}}^{e}\) and \(\tilde{{\varvec{A}}}_{n+1}\) should be written as \(6 \times 6\) matrices. After the quantities are multiplied, the result can be reduced to a \(3 \times 3\) matrix which is suitable for the case of plane strain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weed, D.A., Foster, C.D. & Motamedi, M.H. A robust numerical framework for simulating localized failure and fracture propagation in frictional materials. Acta Geotech. 12, 253–275 (2017). https://doi.org/10.1007/s11440-016-0474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0474-4

Keywords

Navigation