Skip to main content
Log in

Finite element modelling of non-linear deformation of rate-dependent materials using a R-minimum strategy

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A R-minimum strategy, which was proposed and successfully applied to analyse the non-linear rate-independent finite deformation (including the thermal–mechanical coupling and frictional contact) of elasto-plastic materials, is extended and applied here to simulate the deformation of rate-dependent materials. It involves no iterations, thus belongs to the static-explicit algorithm and avoids the convergence problem resulting from nonlinearities. The R-minimum strategy-based adaptive control scheme of the time step size is proposed and applied to the related analysis of the rate-dependent materials with both the time-dependent and the time-independent viscosity. Both the simple benchmark test and the practical application in evaluation of the effect of the Earth materials on its response to the centrifugal force are carried out to demonstrate the stability, efficiency and usefulness of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gong XN (1995) Constitutive equations of engineering materials. Architecture and Building Press, Beijing

    Google Scholar 

  2. Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear materials. Int J Numer Methods Eng 15:1413–1418. doi:10.1002/nme.1620150914

    Article  MATH  Google Scholar 

  3. Kawka M, Makinouchi A (1995) Shell element formulation in the static explicit FEM code for simulation of sheet stamping. J Mater Process Technol 50:105–115. doi:10.1016/0924-0136(94)01373-9

    Article  Google Scholar 

  4. Laursen TA, Simo JC (1993) A continuum-based finite element formulation for implicit solution of multi-body, large deformation frictional contact problems. Int J Numer Methods Eng 36:3451–3485. doi:10.1002/nme.1620362005

    Article  MATH  MathSciNet  Google Scholar 

  5. McMeeking RM, Rice JR (1975) Finite element formulation for problems of large elastic–plastic deformation. Int J Solids Struct 11:601–616. doi:10.1016/0020-7683(75)90033-5

    Article  MATH  Google Scholar 

  6. Santos A, Makinouchi A (1995) Contact strategies to deal with different tool descriptions in static explicit FEM of 3-D sheet metal forming simulation. J Mater Proc Technol 50:277–291. doi:10.1016/0924-0136(94)01391-D

    Article  Google Scholar 

  7. Sheet Forming Simulation Research Group (1996) ITAS3D user’s manual, Version 2, Sheet Forming Simulation Research Group, Japan

  8. Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elasto-plasticity. Comput Methods Appl Mech Eng 48:101–118. doi:10.1016/0045-7825(85)90070-2

    Article  MATH  Google Scholar 

  9. Sloan SW (1987) Substepping schemes for the numerical integration of elastoplastic stress–strain relations. Int J Numer Methods Eng 24:893–911. doi:10.1002/nme.1620240505

    Article  MATH  MathSciNet  Google Scholar 

  10. Xing HL, Mora P, Makinouchi A (2006) An unified friction description and its application to simulation of frictional instability using finite element method. Philos Mag 86:3453–3475. doi:10.1080/14786430500198452

    Article  Google Scholar 

  11. Xing HL, Fujimoto T, Makinouchi A (1999) FE modelling of multiple thermo-elasto-plastic body contact in finite deformation and its application to tube and tubesheet assembling. Effective Engineering Analysis, NAFEMS, UK, pp 669–680

  12. Xing HL, Makinouchi A (2000) A node-to-point contact element strategy and its applications. RIKEN Rev Focused High Perform Comput 30:35–39

    Google Scholar 

  13. Xing HL, Makinouchi A (2001) Numerical analysis and design for tubular hydroforming. Int J Mech Sci 43:1009–1026. doi:10.1016/S0020-7403(00)00046-1

    Article  MATH  Google Scholar 

  14. Xing HL, Makinouchi A (2002) FE modelling of thermo-elasto-plastic finite deformation and its application in sheet warm forming. Eng Comput Int J Comput Aided Eng Softw 19:392–410. doi:10.1108/02644400210430172

    Article  MATH  Google Scholar 

  15. Xing HL, Makinouchi A (2002) Finite element analysis of sandwich friction experimental model of rocks. Pure Appl Geophys 159:1985–2009. doi:10.1007/s00024-002-8719-6

    Article  Google Scholar 

  16. Xing HL, Makinouchi A (2002) Finite-element modelling of multibody contact and its application to active faults. Concurr Comput Pract Experience 14:431–450. doi:10.1002/cpe.623

    Article  MATH  Google Scholar 

  17. Xing HL, Makinouchi A (2002) Three dimensional finite element modelling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy. Comput Methods Appl Mech Eng 191:4193–4214. doi:10.1016/S0045-7825(02)00372-9

    Article  Google Scholar 

  18. Xing HL, Makinouchi A (2003) Finite element modelling of frictional instability between deformable rocks. Int J Numer Anal Methods Geomech 27:1005–1025. doi:10.1002/nag.309

    Article  MATH  Google Scholar 

  19. Xing HL, Mora P, Makinouchi A (2003) Finite element simulation of stress evolution in a frictional contact system, vol 4. Lecture Notes in Computer Science. Springer, Berlin, pp 798–806

  20. Xing HL, Mora P, Makinouchi A (2004) Finite element analysis of fault bend influence on stick-slip instability along an intra-plate fault. Pure Appl Geophys 161:2091–2102. doi:10.1007/s00024-004-2550-1

    Article  Google Scholar 

  21. Xing HL, Wang ZR (1997) Finite element analysis and design of thin sheet superplastic forming. J Mater Process Technol 68:1–7. doi:10.1016/S0924-0136(96)02510-1

    Article  Google Scholar 

  22. Xing HL, Wang ZR (1998) Prediction and control of cavity growth during superplastic sheet forming with finite element modelling. J Mater Process Technol 75:87–93. doi:10.1016/S0924-0136(97)00296-3

    Article  Google Scholar 

  23. Xing HL, Zhang KF, Wang ZR (1994) Study on the optimal mode of superplastic deformation. J Mater Process Technol 44:29–34. doi:10.1016/0924-0136(94)90035-3

    Article  Google Scholar 

  24. Xing HL, Zhang KF, Wang ZR (2004) Recent development of mechanics of superplasticity and its applications. J Mater Process Technol 151:196–202. doi:10.1016/j.jmatprotec.2004.04.039

    Article  Google Scholar 

  25. Xing HL, Zhang J, Yin C (2007) A finite element analysis of tidal deformation of the entire earth with a discontinuous outer layer. Geophys J Int 170:961–970. doi:10.1111/j.1365-246X.2007.03442.x

    Google Scholar 

  26. Yamada Y, Yoshimura N, Sakurai T (1991) Plastic stress-strain matrix and its application for the solution of elastic -plastic problems by finite element method. Int J Mech Sci 10:343–354. doi:10.1016/0020-7403(68)90001-5

    Article  Google Scholar 

Download references

Acknowledgments

Support is gratefully acknowledged by the relevant national projects of ARC DP066620, LP0560932 and NSFC 40728004. The authors are grateful to the three anonymous reviewers for their advice/comments that allowed this paper to be improved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, H.L., Zhang, J. Finite element modelling of non-linear deformation of rate-dependent materials using a R-minimum strategy. Acta Geotech. 4, 139–148 (2009). https://doi.org/10.1007/s11440-009-0090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-009-0090-7

Keywords

Navigation