Skip to main content
Log in

Three-dimensional Cosserat homogenization of masonry structures: elasticity

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Masonry is a two-phase composite material formed by regularly distributed bricks and mortar. The homogenization procedure followed here extends the 2D approach of Sulem and Mühlhaus (Mech Cohesive Frict Mater 2:31–46, 1997) and leads to an anisotropic 3D Cosserat continuum. The enriched kinematics of the Cosserat continuum allows us to model microelement systems undergoing in-plane and out-of-plane rotations. The domain of validity of the derived Cosserat continuum is discussed by comparing the dispersion function of the discrete system of blocks with the continuous one and is found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The reader is invited to download the Mathematica Working files from: http://www.geolab.mechan.ntua.gr/people/stefano

References

  1. Aboudi J (1991) Mechanics of composite materials. A unified micromechanical approach. Elsevier, Amsterdam

    MATH  Google Scholar 

  2. Adhikary DP, Mühlhaus HB, Dyskin AV (2001) A numerical study of flexural buckling of foliated rock slopes. Int J Numer Anal Methods Geomech 25:871–884

    Article  MATH  Google Scholar 

  3. Askar A, Cakmak AS (1968) A structural model of a micropolar continuum. Int J Eng Sci 6:583–589

    Article  MATH  Google Scholar 

  4. Bakhalov N, Panasenko G (1989) Homogenisation: averaging process in periodic media: mathematical problems in the mechanics of composite materials. Kluwer, Dordrecht

    Google Scholar 

  5. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland, Amsterdam

    MATH  Google Scholar 

  6. Besdo D (1985) Inelastic behaviour of plane frictionless block-systems described as Cosserat media. Arch Mech Meccanica 37:603–619

    MATH  Google Scholar 

  7. Cecchi A, Sab K (2002) A multi-parameter homogenization study for modeling elastic masonry. Eur J Mech 21:249–268

    Article  MathSciNet  MATH  Google Scholar 

  8. Cecchi A, Sab K (2002) Out of plane model for heterogeneous periodic materials: the case of masonry. Eur J Mech 21:715–746

    Article  MathSciNet  MATH  Google Scholar 

  9. Cecchi A, Sab K (2004) A comparison between a 3D discrete model and two homogenized plate models for periodic elastic brickwork. Int J Solids Struct 41:2259–2276

    Article  MATH  Google Scholar 

  10. Cerrolaza M, Sulem J, Elbied A (1999) A Cosserat non-linear finite element analysis software for blocky structure. Adv Eng Softw 30:69–83

    Article  Google Scholar 

  11. Christensen RM (1979) Mechanics of composite materials. Wiley, New York

    Google Scholar 

  12. Hashin Z (1962) The elastic moduli of heterogeneous materials. ASME J Appl Mech 29:143–150

    MathSciNet  MATH  Google Scholar 

  13. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviours of multiphase materials. J Mech Phys Solids 11:127–140

    Article  MathSciNet  MATH  Google Scholar 

  14. Hill R (1963) Elastic properties of reinforced solids. Some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  15. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213

    Article  Google Scholar 

  16. Kalamkarov AL (1992) Composite and reinforced elements of construction. Wiley, New York

    Google Scholar 

  17. Kunin IA (1982) Elastic media with microstructure I. One-dimensional models. Springer, Berlin

    MATH  Google Scholar 

  18. Kunin IA (1983) Elastic media with microstructure II. Three-dimensional models. Springer, Berlin, Heidelberg, New York

    MATH  Google Scholar 

  19. Masiani R, Trovalusci P (1996) Cosserat and Cauchy materials as continuum models of brick masonry. Meccanica 31:421–432

    Article  MATH  Google Scholar 

  20. Masiani R, Rizzi NL, Trovalusci P (1995) Masonry walls as structured continua. Meccanica 30:673–683

    Article  MathSciNet  MATH  Google Scholar 

  21. Maugin GA (1999) Non-linear waves in elastic crystals. Oxford University Press, Oxford

    Google Scholar 

  22. Milani G, Lourenco PB, Tralli A (2006) Homogenised limit analysis of masonry walls, Part I: failure surfaces. Comput Struct 84:166–180

    Article  Google Scholar 

  23. Mühlhaus HB (1993) Continuum models for layered and blocky rock. In: Fairhurst C (ed) Comprehensive rock engineering 2:209–230

  24. Mühlhaus HB, Oka F (1996) Dispersion and wave propagation in discrete and continuous models for granular materials. Int J Solids Struct 33:2841–2858

    Article  MATH  Google Scholar 

  25. Mühlhaus HB, Sulem J, Unterreiner P (1997) Discrete and continuous models for dry masonry columns. ASCE J Eng Mech 123:399–403

    Article  Google Scholar 

  26. Novozhilov VV (1961) Theory of elasticity. Pergamon Press, New York

    MATH  Google Scholar 

  27. Pain HJ (1995) The physics of vibrations and waves, 4th edn. Wiley, New York

    Google Scholar 

  28. Pasternak E, Mühlhaus H-B (2005) Generalised homogenization procedures for granular material. J Eng Math 52:199–229

    MATH  Google Scholar 

  29. Pradel F, Sab K (1998) Cosserat modeling of elastic periodic lattice structures. C R Acad Sci Paris Série II b 326:699–704

    MATH  Google Scholar 

  30. Raffard D (2000) Modélisation de structures maçonnées par homogénéisation numérique non linéaire: application aux ouvrages d’intérêt archéologique, PhD Thesis at Institut National Polytechnique de Lorraine, France

  31. Sánchez-Palencia E (1980) Non-homogeneous media and vibration theory. Springer, Berlin

    MATH  Google Scholar 

  32. Sánchez-Palencia E, Zaoui A (1987) Homogenization techniques for composite media. Springer, Berlin

    MATH  Google Scholar 

  33. Stefanou I, Sulem J, Vardoulakis I (2006) Continuum modelling of masonry structures under static and dynamic loading. In: Kourkoulis SK (ed) Fracture and failure of natural building stones. Springer, Dordrecht, pp. 123–136

    Chapter  Google Scholar 

  34. Suiker ASJ, de Borst R, Chang CS (2000) Micro-mechanically based higher-order continuum models for granular materials. In: Kolymbas D (ed) Constitutive modelling of granular materials. Springer, Berlin, pp 249–274

    Google Scholar 

  35. Suiker ASJ, de Borst R, Chang CS (2001) Micro-mechanical modelling of granular material. Part 1: derivation of a second-gradient micro-polar constitutive theory. Acta Mechanica 149:161–180

    Article  MATH  Google Scholar 

  36. Suiker ASJ, de Borst R, Chang CS (2001) Micro-mechanical modelling of granular material. Part 2: plane wave propagation in finite media. Acta Mechanica 149:181–200

    Article  Google Scholar 

  37. Sulem J, Mühlhaus H-B (1997) A continuum model for periodic two-dimensional block structures. Mech Cohesive Frict Mater 2:31–46

    Article  Google Scholar 

  38. Tollenaere H, Caillerie D (1998) Continuous modeling of lattice structures by homogenization. Adv Eng Softw 29(7–9):699–705

    Article  Google Scholar 

  39. Trovalusci P, Masiani R (2005) A multifield model for blocky materials based on multiscale description. Int J Solids Struct 42:5778–5794

    Article  MATH  Google Scholar 

  40. Vardoulakis I, Sulem J (1995) Bifurcation analysis in geomechanics. Blackie, Glascow

    Google Scholar 

  41. Wolfram Research, Inc, Mathematica® 5.0, ©Copyright 1988–2005

Download references

Acknowledgments

This research is sponsored by the General Secretariat for Research and Technology in Greece and the French Ministry of Foreign Affairs in the frame of the bilateral S & T cooperation between the French and Hellenic Republic (2005–2007): “Nouvelles méthodes d’analyse numérique du comportement mécanique des monuments anciens - Application à l’Acropole”. The authors would like to thank K. Sab for fruitful discussions and the two reviewers for their constructive remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Stefanou.

Appendix

Appendix

1.1 Lattice equations of motion

The equilibrium of forces and moments acting on block (I,J) yields to the following six equations:

$$ \begin{aligned} m{\left({{\ddot{u}}_{1}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} &= A_{V} c_{N} {\left({{\left({u_{1}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} - 2{\left({u_{1}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({u_{1}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)}\\ & \quad + A_{H} c_{Q} {\left({{\left({u_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({u_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - 4{\left({u_{1}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({u_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({u_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad + \frac{1}{2}A_{H} c_{Q} b{\left({- {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ m{\left({{\ddot{u}}_{2}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} &= A_{H} c_{N} {\left({{\left({u_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({u_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - 4{\left({u_{2}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({u_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({u_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad + A_{V} c_{Q} {\left({{\left({u_{2}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} - 2{\left({u_{2}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({u_{2}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)} + \frac{1}{2}A_{V} c_{Q} a{\left({{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} - {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)} \\ & \quad + \frac{1}{4}A_{H} c_{N} a{\left({{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} - {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\m{\left({{\ddot{u}}_{3}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} &= A_{H} c_{Q} {\left({{\left({u_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({u_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - 4{\left({u_{3}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({u_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({u_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad + A_{V} c_{Q} {\left({{\left({u_{3}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} - 2{\left({u_{3}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({u_{3}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)}\\ & \quad + \frac{1}{2}A_{H} c_{Q} b{\left({{\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} - {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} - {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad + \frac{1}{4}A_{H} c_{Q} a{\left({- {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} - {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad + \frac{1}{2}A_{V} c_{Q} a{\left({- {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)} \\J_{1} {\left({{\ddot{\omega}}_{1}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} &= A_{V} c_{{{{\rm MV1}}}} {\left({{\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} - 2{\left({\omega_{1}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)} \\ & \quad + A_{H} c_{{{{\rm MH1}}}} {\left({{\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - 4{\left({\omega_{1}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{4}A_{H} c_{Q} b^{2} {\left({+ {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + 4{\left({\omega_{1}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{8}A_{H} c_{Q} ba{\left({- {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} - {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{2}A_{H} c_{Q} b{\left({{\left({u_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} - {\left({u_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + {\left({u_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} - {\left({u_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ J_{2} {\left({{\ddot{\omega}}_{2}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} &= A_{V} c_{{{{\rm MV2}}}} {\left({{\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} - 2{\left({\omega_{2}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)} \\ & \quad + A_{H} c_{{{{\rm MH2}}}} {\left({{\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - 4{\left({\omega_{2}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{4}A_{V} c_{Q} a^{2} {\left({{\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} + 2{\left({\omega_{2}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)} \\ & \quad - \frac{1}{{16}}A_{H} c_{Q} a^{2} {\left({+ {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + 4{\left({\omega_{2}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({\omega_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{8}A_{H} c_{Q} ab{\left({- {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} - {\left({\omega_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{2}A_{V} c_{Q} a{\left({- {\left({u_{3}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} + {\left({u_{3}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)} \\ & \quad - \frac{1}{4}A_{H} ac_{Q} {\left({- {\left({u_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} - {\left({u_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + {\left({u_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({u_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\J_{3} {\left({{\ddot{\omega}}_{3}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} &= A_{V} c_{{{{\rm MV3}}}} {\left({{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} - 2{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)} \\ & \quad + c_{{{{\rm MH3}}}} A_{H} {\left({{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - 4{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{{16}}A_{H} c_{N} a^{2} {\left({{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + 4{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{4}A_{H} c_{Q} b^{2} {\left({{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} + 4{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + b{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)}\\ & \quad - \frac{1}{4}A_{V} c_{Q} a^{2} {\left({{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} + 2{\left({\omega_{3}} \right)}^{b}_{{{{\rm I}},{{\rm J}}}} + {\left({\omega_{3}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)} \\ & \quad - \frac{1}{4}A_{H} c_{N} a{\left({{\left({u_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({u_{2}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - {\left({u_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} - {\left({u_{2}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{2}A_{H} c_{Q} b{\left({- {\left({u_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} - 1}} + {\left({u_{1}} \right)}^{b}_{{{{\rm I}} - 1,{{\rm J}} + 1}} - {\left({u_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} - 1}} + {\left({u_{1}} \right)}^{b}_{{{{\rm I}} + 1,{{\rm J}} + 1}}} \right)} \\ & \quad - \frac{1}{2}A_{V} c_{Q} a{\left({{\left({u_{2}} \right)}^{b}_{{{{\rm I}} - 2,{{\rm J}}}} - {\left({u_{2}} \right)}^{b}_{{{{\rm I}} + 2,{{\rm J}}}}} \right)}\end{aligned} $$
(33)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanou, I., Sulem, J. & Vardoulakis, I. Three-dimensional Cosserat homogenization of masonry structures: elasticity. Acta Geotech. 3, 71–83 (2008). https://doi.org/10.1007/s11440-007-0051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-007-0051-y

Keywords

Navigation