Skip to main content
Log in

A hypoplastic model for clay and sand

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The theory of hypoplasticity was developed initially for non-cohesive soils. However, sand and clay have many common properties; therefore arose the idea to extend the hypoplastic model to clay. The proposed model is able to describe the behaviour of cohesive soils with the incorporation of an appropriate structure tensor into the constitutive equation. This tensor is a stress-like internal parameter, also called back stress. This enables us to describe the behaviour of cohesive soils with the same material parameters for several states of consolidation and also to model barotropy and pycnotropy of sand. Numerical simulations of element tests are performed in order to check the performance of this hypoplastic model. Experimental data obtained with normally and overconsolidated clay and sand specimens with various densities are taken for comparison, and it is shown that the model is capable of describing the material behaviour of clay and sand. The determination of the material constants, the calibration method, is also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. This can be avoided with some modifications, which, however, cause other shortcomings, cf. [6].

  2. With T as the only state variable, cohesion can be modelled by replacing the stress tensor T by the modified stress Tk 1 with constant k [2].

  3. Note that anisotropic stress states can emerge (e.g. due to oedometric consolidation) from a hydrostatic initial S.

  4. The dilatancy angle β is defined as: tanβ is the slope of the curve in the volumetric strain versus axial strain diagram.

Abbreviations

T :

Stress tensor

T * :

Deviatoric part of stress tensor

D :

Stretching tensor

W :

Spin tensor

\(\hat{{{\mathbf{T}}}}\) :

Normalised stress tensor

\(\hat{{{\mathbf{T}}}}^{*}\) :

Normalised deviatoric stress tensor

\({\mathop{{\bf T}}\limits^{\circ}}\) :

Objective stress rate

S :

Structure tensor

S * :

Deviatoric part of structure tensor

p ref :

Reference stress

β:

Barotropy exponent

f b :

Barotropy factor

f b :

Factor of barotropy

f e :

Factor of pycnotropy

f d :

Factor of pycnotropy

a :

Parameter of limit condition

F :

Stress function according to Matsuoka/Nakai

e :

Void ratio

e c :

Critical void ratio

e d :

Minimum void ratio

e i :

Maximum void ratio

φ c :

Critical friction angle

OCR:

Overconsolidation ratio

References

  1. Bauer E (1996) Calibration of a comprehensive constitutive equation for granular materials. Soils Found 36(1):13–26

    Google Scholar 

  2. Bauer E, Wu W (1994) Extension of hypoplastic constitutive model with respect to cohesive powders. In: Siriwardane HJ, Zeman MM (eds) Computer methods and advances in geomechanics. A.A. Balkema, Rotterdam, pp 531–536

    Google Scholar 

  3. Bishop AW, Henkel DJ (1962) The measurement of soil properties in the triaxial test. Edward Arnold, London

  4. Henkel DJ (1956) The effect of overconsolidation on the behaviour of clays during shear. Géotechnique 6:139–150

    Google Scholar 

  5. Herle I (1997) Hypoplastizität und Granulometrie einfacher Korngerüste. Publ. series of Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe (142)

  6. Herle I, Doanh T, Wu W (2000) Comparison of modelling of undrained triaxial tests on loose sand. In: Kolymbas D (ed) Constitutive modelling of granular materials. Springer, Berlin, pp 333–351

  7. Jaumann G (1911) Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzungsber Akad Wiss Wien (IIa) 120:385–530

    Google Scholar 

  8. Kolymbas D (1977) A rate-dependent constitutive equation for soils. Mech Res Commun 4:367–372

    Article  Google Scholar 

  9. Kolymbas D (1985) A generalized hypoplastic constitutive law. In: Proceedings of the 11th Int. Conf. SMFE. A.A Balkema, San Francisco, p 2626

  10. Kolymbas D (1988) Eine konstitutive Theorie für Böden und andere körnige Stoffe. Publ series of: Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe (109)

  11. Kolymbas D (2000) Introduction to hypoplasticity. A.A. Balkema, Amsterdam

  12. Kolymbas D, Topolnicki M (1988) A generalization of Hvorslev’s equivalent stress. In: Swoboda G (ed) Numerical methods in geomechanics. A.A. Balkema, Amsterdam, pp 321–326

  13. Kolymbas D, Wu W (1990) Recent results of triaxial tests with granular materials. Powder Technol 60(2):99–119

    Article  Google Scholar 

  14. Niemunis A (2003) Extended hypoplastic models for soils. Publ series of Institut für Grundbau und Bodenmechanik der Ruhr–Universität Bochum 34

  15. Parry RHG (1960) Triaxial compression and extension tests on remoulded saturated clay. Géotechnique 10(4):166–180

    Article  Google Scholar 

  16. Tiedemann B (1937) Über die Schubfestigkeit bindiger Böden. Die Bautechnik 10:400–403

    Google Scholar 

  17. Topolnicki M (1987) Observed stress–strain behaviour of remoulded saturated clay and examination of two constitive models. Publ series of Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe (107)

  18. von Wolffersdorff P-A (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive Frict Mater 1:251–271

    Article  Google Scholar 

  19. Wu W (1992) Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Publ series of: Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe (129)

  20. Wu W, Kolymbas D (1990) Numerical testing of the stability criterion for hypoplastic constitutive equations. Mech Mater 9:245–253

    Article  Google Scholar 

  21. Wu W, Kolymbas D (1991) On some issues in triaxial extension tests. Geotech Test J 14(3):276–287

    Article  Google Scholar 

  22. Wu W, Kolymbas D (2000) Hypoplasticity then and now. In: Kolymbas D (ed) Constitutive modelling of granular materials. Springer, Berlin, pp 57–105

Download references

Acknowledgment

This paper is a partial research result of the first author which was financially supported by the Austrian Science Fund (FWF), Grant No. 14969, which is thankfully acknowledged, and supervised by the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Weifner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weifner, T., Kolymbas, D. A hypoplastic model for clay and sand. Acta Geotech. 2, 103–112 (2007). https://doi.org/10.1007/s11440-007-0031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-007-0031-2

Keywords

Navigation