Skip to main content
Log in

Hypoplastic material constants for a well-graded granular material for base and subbase layers of flexible pavements

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents the results of the first phase of a research project dealing with the constitutive description of the behaviour of well-graded granular materials when used for base or subbase layers in flexible pavement structures (so-called “unbound granular materials”, UGMs). Monotonic and cyclic loading is under consideration. The present paper concentrates on test results and the constitutive description of monotonic loading. Hypoplasticity in the version proposed by von Wolffersdorff is used as the constitutive model. Sets of material constants for typical UGM materials do not exist in the literature. The experimental determination of a set of constants according to the procedure proposed by Herle is described in this paper. In the monotonic triaxial tests specimens with a square cross-section were used. The paper presents a preliminary test series comparing triaxial results obtained with cylindrical and with prismatic specimens. Re-calculations of the element tests are also presented. The simulations show a good congruence with the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Asphalt Institute (AI) (1982) Research and Development of the Asphalt Institute’s Thickness Design Manual MS - 1, 9th Ed., College Park, Md

  2. Anh Dan LQ, Tatsuoka F, Koseki J (2003) Viscous shear stress-strain characteristics of dense gravel in triaxial compression. Geotechnical and Geological Engineering

  3. AUSTROADS (1992) Pavement Design - A Guide to the Structural Design of Road Pavement, Sydney - Australia

  4. American Association of State Highway and Transportation Officials (AASHTO) (1986) Guide for Design of Pavement Structures, Washington, DC

  5. American Association of State Highway and Transportation Officials (AASHTO) (1993) Guide for Design of Pavement Structures, Washington, DC

  6. Barksdale RD, Itani SY (1989) Influence of Aggregate Shape on Base Behaviour. Transportation Research Record (1227):173 – 182

  7. Bauer E (1996) Calibration of a comprehensive constitutive equation for granular materials. Soils and Foundations 36:13–26

    Google Scholar 

  8. Bishop AW, Green GE (1965) The influence of end restraint on the compression strength of a cohesionless soil. Géotechnique 15(3):243–266

    Article  Google Scholar 

  9. Bühler M (2006) Experimental and numerical investigation of soil-foundation-structure interaction during monotonic, alternating and dynamic loading. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik, Universität Karlsruhe, Heft 166

  10. COST 337 (2000) Unbound Granular Materials for Road Pavements, Final Report of the Action. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  11. Cudmani R (2004) Modelación numérica de estructuras geotécnicas y taludes durante terremotos de gran magnitud. In: X Congreso y V Seminario Colombianos de Geotecnia

  12. Cudmani R (2001) Statische, alternierende und dynamische Penetration in nichtbindige Böden. Dissertation, Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft 152

  13. Dawson AR, Mundy MJ, Huhtala M (2000) European Research into Granular Material for Pavement Bases and Subbases. Transportation Research Record, pp 91–99

  14. Goto S, Tatsuoka F, Shibuya S, Kim Y-S, Sato T (1991) A simple gauge for local small strain measurements in the laboratory. Soils and Foundations 31(1):169–180

    Google Scholar 

  15. Hayano K, Matsumoto M, Tatsuoka F, Koseki J (2001) Evaluation of time-dependent deformation properties of sedimentary soft rock and their constitutive modeling. Soils and Foundations 41(2):21–38

    Google Scholar 

  16. Herle I (1997) Hypoplastizität und Granulometrie einfacher Korngerüste. Promotion, Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft Nr. 142

  17. Herle I (2000) Granulometric Limits of Hypoplastic Models. Institute of Theoretical and Applied Mechanics, Czech Academy of Sciences, Prosecká, Task Quarterly, Scientific Bulletin of Academic Computer Centre in Gdansk 4(3):389–408

    Google Scholar 

  18. Herle I, Gudehus G (1999) Determination of Parameters of a Hypoplastic Constitutive Model from Properties of Grain Assemblies. Mechanics of Cohesive-Frictional Materials 4(5):461–486

    Article  Google Scholar 

  19. HMSO (1994) Design Manual for Roads and Bridges. Vol 7, HD 25/94, part 2, Foundations

  20. Hoque E, Sato T, Tatsuoka F (1997) Performance evaluation of LDTs for use in triaxial tests. Geotechnical and Geological Engineering 20(2):149–167

    Google Scholar 

  21. IDU (2002) Instituto de Desarrollo Urbano and Universidad de Los Andes, Manual de Diseno de Pavimentos para Bogotá. Bogotá D.C., Colombia

  22. INVIAS Instituto Nacional de Vías (2002) Manual de Diseño de Pavimentos Asfálticos en vías con Bajos, Medios y Altos volúmenes de Tránsito. Bogotá D.C., Colombia

  23. Jiang G-L, Tatsuoka F, Flora A, Koseki J (1997) Inherent and stress-state-induced anisotropy in very small strain stiffness of a sandy gravel. Géotechnique 47(3):509–521

    Google Scholar 

  24. Kolymbas D (1991) An outline of hypoplasticity. Archive of Applied Mechanics 61:143–151

    Google Scholar 

  25. Kongsukprasert L, Kuwano R, Tatsuoka F (2001) Effects of ageing with shear stress on the stress-strain behaviour of cement-mixed sand. In: Tatsuoka, et al. (ed) Advanced laboratory stress-strain testing of geomaterials. Balkema, pp 251–258

  26. Lekarp F, Isacsson U, Dawson A (2000) State of the art. II: Permanent strain response of unbound aggregates. Journal of Transportation Engineering 126(1):76–83

    Article  Google Scholar 

  27. Libreros Bertini AB (2006) Hypo- und viskohypoplastische Modellierung von Kriech- und Rutschbewegungen, besonders infolge Starkbeben. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik, Universität Karlsruhe, Heft 165

  28. Matsuoka H, Nakai T (1982) A new failure for soils in three-dimensional stresses. In: Deformation and Failure of Granular Materials. Proc. IUTAM Symp. in Delft, pp 253–263

  29. Morgan JR (1966) The Response of Granular Materials to Repeated Loading. In Proc., 3rd Conf., ARRB

  30. Nawir H, Tatsuoka F, Kuwano R (2003) Experimental evaluation of the viscous properties of sand in shear. Soils and Foundations 43(6):13–32

    Google Scholar 

  31. Nicholson PG, Seed RB, Anwar HA (1993) Elimination of membrane compliance in undrained triaxial testing. I. Measurement and evaluation. Canadian Geotechnical Journal 30:727–738

    Article  Google Scholar 

  32. Niemunis A (2000) Akkumulation der Verformung infolge zyklischer Belastung – numerische Strategien. In Beiträge zum Workshop: Boden unter fast zyklischer Belastung: Erfahrungen und Forschungsergebnisse, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 32, pp 1–20

  33. Niemunis A (2003) Extended hypoplastic models for soils. Habilitation, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 34, 2003. available from http://www.pg.gda.pl/∼aniem/an-liter.html

  34. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials 2:279–299

    Article  Google Scholar 

  35. Niemunis A, Wichtmann T, Triantafyllidis T (2005) A high-cycle accumulation model for sand. Computers and Geotechnics 32(4):245–263

    Article  Google Scholar 

  36. Rondón HA, Lizcano A (2006) Modelos de comportamiento de materiales granulares para pavimentos y aplicación de la ley constitutiva hipoplástica. In: III Jornadas Internacionales de Ingeniera Civil. Cuba

  37. Schünemann A (2006) Numerische Modelle zur Beschreibung des Langzeitverhaltens von Eisenbahnschotter unter alternierender Beanspruchung. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik, Universität Karlsruhe, Heft 168

  38. Sweere GTH (1990) Unbound granular bases for roads. PhD thesis, Delft University of Technology, Netherlands

  39. Shell International Petroleum Company (1978) Shell Pavement Design Manual. Asphalt Pavement and Overlays for Road Traffic, London

    Google Scholar 

  40. TRL Transport Research Laboratory (1993) A Guide to the Structural Design of Bitumen-Surfaced Roads in Tropical and Sub-tropical Countries. RN31, Draft 4th edition

  41. von Wolffersdorff P-A (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials 1:251–271

    Article  Google Scholar 

  42. Wehr WCS (1999) Granulatumhüllte Anker und Nägel - Sandanker. Dissertation, Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik, Universität Karlsruhe, Heft 146

  43. Werkmeister S, Dawson A, Wellner F (2001) Permanent Deformation Behaviour of Granular Materials and the Shakedown Concept. Transportation Research Record (1757):75–81

  44. Werkmeister S, Dawson A, Wellner F (2004) Pavement Design Model of Unbound Granular Materials. Journal of Transportation Engineering, 130:665–674

    Article  Google Scholar 

  45. Wichtmann T (2005) Explicit accumulation model for non-cohesive soils under cyclic loading. Dissertation, Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Heft 38

Download references

Acknowledgments

The experimental work was done at the Institute of Soil Mechanics and Foundation Engineering at Ruhr-University Bochum. The stay of H. Rondón in Bochum was financed by scholarships of Colciencias and DAAD which is gratefully acknowledged herewith. Furthermore, the authors want to thank the laboratory assistants M. Skubisch and B. Kaminski for carefully performing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wichtmann.

Appendix

Appendix

Table 4

Table 4 Summary of hypoplastic constants for various materials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondón, H.A., Wichtmann, T., Triantafyllidis, T. et al. Hypoplastic material constants for a well-graded granular material for base and subbase layers of flexible pavements. Acta Geotech. 2, 113–126 (2007). https://doi.org/10.1007/s11440-007-0030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-007-0030-3

Keywords

Navigation