Skip to main content
Log in

Ultrathin lanthanide oxides nanomaterials: synthesis, properties and applications

  • Review
  • Materials Science
  • Published:
Science Bulletin

Abstract

Over the past decade, ultrathin lanthanide oxides (Ln2O3, Ln = La to Lu) nanomaterials have been intensively studied in the fields of rare earth materials science. This unique class of nanomaterials has shown many unprecedented properties (big surface area, high surface effect, physical and chemical activities) and is thus being explored for numerous promising applications. In this review, a brief introduction of ultrathin Ln2O3 nanomaterials was given and their unique advantages were highlighted. Then, the typical synthetic methodologies were summarized and compared (thermal decomposition, solvothermal, soft template, co-precipition and microwave etc.). Due to the high surface effect, some promising applications of ultrathin Ln2O3 nanomaterials, such as drug delivery and catalysis of CO oxidation, were reviewed. Finally, on the basis of current achievements on ultrathin Ln2O3 nanomaterials, personal perspectives and challenges on future research directions were proposed.

摘要

在过去的十年中, 超薄稀土氧化物纳米材料日益成为稀土材料科学的研究热点。由于其高的比表面积、强的表面效应及丰富多样的物化活性位点,超薄稀土氧化物纳米材料正被广泛应用在不同领域。本文首先简要介绍了超薄稀土氧化物纳米材料的研究背景,其次总结了此类纳米材料的软化学合成方法,如热分解、溶剂热、软模板、共沉淀、超声微波等方法,并概述了不同方法的合成机理和合成特点。由于超薄稀土氧化物纳米材料独特的表面性质,本文还简要评价了此类材料在药物控释及催化反应领域的应用特点。最后,对未来此方向发展所面临的机遇和挑战进行了阐述。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xia YN, Yang PD, Sun YG et al (2003) One-dimensional nanostructures: synthesis, characterization and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  2. Hu JT, Odom TW, Lieber CM et al (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  CAS  Google Scholar 

  3. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ludovico C, Geoffrey AO (2009) Ultrathin nanowires a materials chemistry perspective. Adv Mater 21:1013–1020

    Article  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Zhang Y, Tan YW, Stormer HL et al (2005) Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438:201–204

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Lee C, Wei XD, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yan ZG, Yan CH (2008) Controlled synthesis of rare earth nanostructures. J Mater Chem 18:5046–5059

    Article  CAS  Google Scholar 

  12. Wang BW, Jiang SD, Wang XT et al (2009) Magnetic molecular materials with paramagnetic lanthanide ions. Sci China Ser B Chem 52:1739–1758

    Article  CAS  Google Scholar 

  13. Dong H, Du SR, Zheng XY et al (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115:10725–10815

    Article  CAS  PubMed  Google Scholar 

  14. Arnaud-Neu F (1994) Solution chemistry of lanthanide macrocycIic complexes. Chem Soc Rev 23:235–241

    Article  CAS  Google Scholar 

  15. Viswanathan S, Kovacs Z, Green KN et al (2010) Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem Rev 110:2960–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gschneidner KA Jr, Eyring LR (2007) Handbook on the physics and chemistry of rare earths, vol 26. Elsevier, Amsterdam, pp 173–233

    Google Scholar 

  17. Bunzli JCG, Pecharsky VK (2012) Handbook on the physics and chemistry of rare earths, vol 1. Elsevier, Amsterdam, pp 165–168

    Google Scholar 

  18. Gai SL, Li CX, Yang PP et al (2014) Recent progress in rare earth micro/NCs: soft chemical synthesis, luminescent properties and biomedical applications. Chem Rev 114:2343–2389

    Article  CAS  PubMed  Google Scholar 

  19. Liu G, Chen X (2007) Handbook on the physics and chemistry of rare earths, vol 37. Elsevier, Amsterdam, pp 99–169

    Google Scholar 

  20. Si R, Zhang YW, You LP et al (2005) Rare-earth oxide nanopolyhedra, nanoplates and nanodisks. Angew Chem Int Ed 117:3320–3324

    Article  Google Scholar 

  21. Si R, Zhang YW, Zhou H et al (2007) Controlled-synthesis, self-assembly behavior and surface-dependent optical properties of high quality rare-earth oxide NCs. Chem Mater 19:18–27

    Article  CAS  Google Scholar 

  22. Paek JS, Lee CH, Lee K et al (2007) Gadolinium oxide nanoring and nanoplate: anisotropic shape control. Cryst Growth Des 7:1378–1380

    Article  CAS  Google Scholar 

  23. Wang DY, Kang YJ, Murray CB et al (2014) Mineralizer-assisted shape-control of rare earth oxide nanoplates. Chem Mater 26:6328–6332

    Article  CAS  Google Scholar 

  24. Cao YC (2004) Synthesis of square gadolinium oxide nanoplates. J Am Chem Soc 126:7456–7457

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Yan B (2012) Salt-effect-based synthesis and anomalous magnetic properties of rare earth oxide nanosheets with sub-1 nm thickness. Chem Eur J 18:5150–5154

    Article  CAS  PubMed  Google Scholar 

  26. Huo ZY, Tsung CK, Yang PD et al (2009) Self-organized ultrathin oxide nanocrystals. Nano Lett 9:1260–1264

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Wang DY, Kang YJ, Murray CB et al (2011) Synthesis and oxygen storage capacity of two-dimensional ceria nanocrystals. Angew Chem Int Ed 50:4378–4381

    Article  CAS  Google Scholar 

  28. Yu TY, Joo J, Hyeon T et al (2006) Single unit cell thick samaria nanowires and nanoplates. J Am Chem Soc 128:1786–1787

    Article  CAS  PubMed  Google Scholar 

  29. Fraser JD, Donald AM, Carlos RL et al (2012) Self-assembly of ultrathin lanthanide oxide nanowires via surfactant-mediated imperfect oriented attachment of nanoparticles. CrystEngComm 14:7110–7114

    Article  Google Scholar 

  30. Zhang XY, Ge J, Xue YM et al (2015) Controlled synthesis of ultrathin lanthanide oxide nanosheets and their promising pH-controlled anticancer drug delivery. Chem Eur J 21:11954–11960

    Article  CAS  PubMed  Google Scholar 

  31. Zhong YT, Yang YJ, Yao JN et al (2013) Controlled synthesis of ultrathin lamellar Eu2O3 nanocrystals: self-assembly of 1D nanowires to 2D nanosheets. Chem Commun 49:10355–10357

    Article  CAS  Google Scholar 

  32. Nguyen TD, Mrabet D, Do TO et al (2008) Controlled self-assembly of Sm2O3 nanoparticles into nanorods: simple and large scale synthesis using bulk Sm2O3 powders. J Phys Chem C 112:15226–15235

    Article  CAS  Google Scholar 

  33. Zhu HZ, Lu YM, Yu SH et al (2013) Selective hydrogenation of nitroaromatics by ceria nanorods. Nanoscale 5:7219–7223

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Yu T, Joo J, Hyeon T et al (2005) Large-scale nonhydrolytic sol–gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. Angew Chem Int Ed 44:7411–7414

    Article  CAS  Google Scholar 

  35. Karmaoui M, Rute ASF, Pinna N et al (2006) Lanthanide based lamellar nanohybrids: synthesis, structural characterization, and optical properties. Chem Mater 18:4493–4499

    Article  CAS  Google Scholar 

  36. Panda AB, Glaspell G, Elshall SM et al (2007) Microwave synthesis and optical properties of uniform nanorods and nanoplates of rare earth oxides. J Phys Chem C 111:1861–1864

    Article  CAS  Google Scholar 

  37. Yu XF, Liu JW, Yu SH et al (2015) Template-and surfactant-free synthesis of ultrathin CeO2 nanowires in a mixed solvent and their superior adsorption capability for water treatment. Chem Sci 6:2511–2515

    Article  CAS  Google Scholar 

  38. Yu XF, Mao LB, Yu SH et al (2016) Three-dimensional melamine sponge loaded with Au/ceria nanowires for continuous reduction of p-nitrophenol in a consecutive flow system. Sci Bull 61:700–705

    Article  CAS  Google Scholar 

  39. Wang H, Uehara M, Nakamura H et al (2005) Synthesis of well-dispersed Y2O3:Eu nanocrystals and self-assembled nanodisks using a simple non-hydrolytic route. Adv Mater 17:2506–2509

    Article  CAS  Google Scholar 

  40. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 2003:927–934

    Article  Google Scholar 

  41. Manna L, Scher EC, Alivisatos AP et al (2002) Shape control of colloidal semiconductor nanocrystals. J Clust Sci 13:521–532

    Article  CAS  Google Scholar 

  42. Burda C, Chen X, Narayanan R et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  43. Jun YW, Choi JS, Cheon J et al (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed 45:3414–3439

    Article  CAS  Google Scholar 

  44. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York

    Google Scholar 

  45. Zhang YW, Sun X, Yan CH et al (2005) Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J Am Chem Soc 127:3260–3261

    Article  CAS  PubMed  Google Scholar 

  46. Bigioni TP, Lin XM, Jaeger HM et al (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5:265–270

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Zhang Z, Sun H, Han M et al (2005) Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv Mater 17:42–47

    Article  Google Scholar 

  48. Liu T, Wang C, Liu Z et al (2014) Drug delivery with PEGylated MoS2 nanosheets for combined photothermal and chemotherapy of cancer. Adv Mater 26:3433–3440

    Article  PubMed  Google Scholar 

  49. Goenka S, Sant V, Sant J et al (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88

    Article  CAS  PubMed  Google Scholar 

  50. Sorensen OT (1981) Thermodynamics and defect structure of nonstoichiometric oxides. In: Sørensen OT (ed) Nonstoichiometric oxides. Academic Press, New York

    Google Scholar 

  51. Kakuta N, Morishima N, Kotobuki NM et al (1997) Oxygen storage capacity (OSC) of aged Pt/CeO2/Al2O3 catalysts: roles of Pt and CeO2 supported on Al2O3. Appl Surf Sci 121:408–412

    Article  ADS  Google Scholar 

  52. Langer R (1998) Drug delivery and targeting. Nature 392:5–10

    CAS  PubMed  Google Scholar 

  53. LaVan DA, McGuire T, Langer R et al (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191

    Article  CAS  PubMed  Google Scholar 

  54. Pankhurst QA, Connolly J, Jones SK et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  ADS  CAS  Google Scholar 

  55. Akimoto J, Nakayama M, Okano T (2014) Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J Control Release 193:2–8

    Article  CAS  PubMed  Google Scholar 

  56. Pan D, Guo C, Luo K et al (2014) PEGylated dendritic diaminocyclohexyl-platinum(II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials 35:10080–10092

    Article  CAS  PubMed  Google Scholar 

  57. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Yang F, Graciani J, Liu P et al (2011) CO Oxidation on inverse CeO x /Cu(111) catalysts: high catalytic activity and ceria-promoted dissociation of O2. J Am Chem Soc 133:3444–3451

    Article  CAS  PubMed  Google Scholar 

  59. Yang F, Graciani J, Liu P et al (2011) CeO2 ↔ CuO x interactions and the controlled assembly of CeO2(111) and CeO2(100) nanoparticles on an oxidized Cu(111) substrate. J Phys Chem C 115:23062–23066

    Article  CAS  Google Scholar 

  60. Rodriguez JA, Liu P, Pérez M et al (2007) Activity of CeO x and TiO x nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318:1757–1760

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Cargnello M, Wieder NL, Fornasiero P et al (2009) Synthesis of dispersible Pd@CeO2 core shell nanostructures by self-assembly. J Am Chem Soc 132:1402–1409

    Article  Google Scholar 

  62. Conesa JC (1995) Computer modeling of surfaces and defects on cerium dioxide. Surf Sci 339:337–352

    Article  ADS  CAS  Google Scholar 

  63. Holsa J, Leskela T, Leskela M et al (1985) Luminescence properties of europium(3+)-doped rare-earth oxyhydroxides. Inorg Chem 24:1539–1542

    Article  CAS  Google Scholar 

  64. Hu S, Liu HL, Wang X et al (2013) Inorganic nanostructures with sizes down to 1 nm: a macromolecule analogue. J Am Chem Soc 135:11115–11124

    Article  CAS  PubMed  Google Scholar 

  65. Chang C, Zhang Q, Mao D (2006) The hydrothermal preparation, crystal structure and photoluminescent properties of GdOOH nanorods. Nanotechnology 17:1981–1985

    Article  ADS  CAS  Google Scholar 

  66. Christensen A, Quesel S (1974) Crystal structure and magnetic structure of TbOOH. J Solid State Chem 241:234–241

    Article  ADS  Google Scholar 

  67. Christensen ANN, Quesel S (1972) The magnetic structure of the monoclinic modification of ErOOH. Solid State Commun 10:765–767

    Article  ADS  CAS  Google Scholar 

  68. Yamamoto O, Takeda Y, Kanno R et al (1985) Thermal decomposition and electrical conductivity of M(OH)3 and MOOH (M = Y, lanthanide). Solid State Ion 17:107–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Start-up Funding from Xi’an Jiaotong University, the Fundamental Research Funds for the Central Universities (2015qngz12), the National Natural Science Foundation of China (21371140), and the China National Funds for Excellent Young Scientists (21522106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Xinyu Zhang and Yongwei Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6935 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Y., Cheng, F. et al. Ultrathin lanthanide oxides nanomaterials: synthesis, properties and applications. Sci. Bull. 61, 1422–1434 (2016). https://doi.org/10.1007/s11434-016-1155-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1155-2

Keywords

Navigation