Skip to main content
Log in

Band structure reconstruction across nematic order in high quality FeSe single crystal as revealed by optical spectroscopy study

  • Article
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

We perform an in-plane optical spectroscopy measurement on high quality FeSe single crystals grown by a vapor transport technique. Below the structural transition at \(T_{{\mathrm{s}}}\,{\sim }90\hbox { K}\), the reflectivity spectrum clearly shows a gradual suppression around \(400\hbox { cm}^{-1}\) and the conductivity spectrum shows a peak at higher frequency. The energy scale of this gap-like feature is comparable to the width of the band splitting observed by ARPES. The low-frequency conductivity consists of two Drude components and the overall plasma frequency is smaller than that of the FeAs based compounds, suggesting a lower carrier density or stronger correlation effect. The plasma frequency becomes even smaller below \(T_{\mathrm{s}}\) which agrees with the very small Fermi energy estimated by other experiments. Similar to iron pnictides, a clear temperature-induced spectral weight transfer is observed for FeSe, being indicative of strong correlation effect.

摘要

我们对用气相输运方法生长的高质量FeSe单晶样品进行了红外光谱的研究。在低温下的电子向列相中反射率谱在\(400\hbox { cm}^{-1}\) 附近受到明显压制, 同时电导率谱在较高能量位置出现了一个峰, 这表明低温下存在能带重构的现象。通过Drude-Lorentz拟合得到电导率上峰的中心位置约为65 meV, 这一能量和ARPES观察到的3d轨道能带劈裂的能量尺度相当。FeSe的低频电导率谱包含一个尖锐的和一个较宽的Drude峰, 其总的等离子体频率比其他的铁基超导体要小一些, 并且在电子向列相中进一步减小。这和其他实验中观察到低温下非常低的费米能一致。与其他FeAs超导体类似, FeSe的光电导率谱上有明显的谱重随着温度降低向高能转移的现象, 说明在FeSe中存在着很强的电子关联效应。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Medvedev S, MeQueen TM, Troyan IA et al (2009) Electronic and magnetic phase diagram of \(\beta -\text{ Fe }_{1.01}\)Se with superconductivity at 36.7 K under pressure. Nat Mater 8:630–633

    Article  Google Scholar 

  2. Lu XF, Wang NZ, Wu H et al (2015) Coexistence of superconductivity and antiferromagnetism in (\(\text{Li }_{0.8}\text{Fe}_{0.2}\))OHFeSe. Nat Mater 14:325–329

    Article  Google Scholar 

  3. Lin H, Xing J, Zhu XY et al (2016) Robust superconductivity and transport properties in (\(\text{Li}_{1-x}\text{Fe}_x\))OHFeSe single crystals. Sci China Phys Mech Astron 59:657404

    Article  Google Scholar 

  4. Liu DF, Zhang WH, Mou DX et al (2012) Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat Commun 3:931

    Article  Google Scholar 

  5. He SL, He JF, Zhang WH et al (2013) Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat Mater 12:605–610

    Article  Google Scholar 

  6. Tan SY, Zhang Y, Xia M et al (2013) Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO\(_3\) thin films. Nat Mater 12:634–640

    Article  Google Scholar 

  7. Lee JJ, Schmitt FT, Moore RG et al (2014) Interfacial mode coupling as the origin of the enhancement of \(T_{{\rm c}}\) in FeSe films on SrTiO\(_3\). Nature 515:245–248

    Article  Google Scholar 

  8. Zhang ZC, Wang YH, Song Q et al (2015) Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO\(_3\) substrate. Sci Bull 60:1301–1304

    Article  Google Scholar 

  9. Jia JF (2015) Superconductivity at 65 K in monolayer FeSe by ex situ Meissner effect measurement. Sci Bull 60:1368–1369

    Article  Google Scholar 

  10. Ge JF, Liu ZL, Liu CH et al (2015) Superconductivity above 100 K in single-layer FeSe films on doped SrTiO\(_3\). Nat Mater 14:285–289

    Article  Google Scholar 

  11. Baek SH, Efremov DV, Ok JM et al (2014) Orbital-driven nematicity in FeSe. Nat Mater 14:210–214

    Article  Google Scholar 

  12. Wang QS, Shen Y, Pan BY et al (2016) Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. Nat Mater 15:159–163

    Article  Google Scholar 

  13. Kasaharaa S, Watashigea ST, Hanagurib T et al (2014) Field-induced superconducting phase of FeSe in the BCS-BEC cross-over. Proc Natl Acad Sci USA 46:16309–16313

    Article  Google Scholar 

  14. Tan SY, Fang Y, Xie DH et al (2016) Observation of Dirac cone band dispersions in FeSe thin films by photoemission spectroscopy. Phys Rev B 93:14513

    Article  Google Scholar 

  15. Wu XX, Liang Y, Fan H et al (2016) Nematic orders and nematicity-driven topological phase transition in FeSe. arXiv:1603.02055

  16. Hu RW, Lei HC, Abeykoon M et al (2011) Synthesis, crystal structure, and magnetism of \(\beta \)-Fe\(_{1.00(2)}\)Se\(_{1.00(3)}\) single crystals. Phys Rev B 83:224502

    Article  Google Scholar 

  17. Böhmer AE, Hardy F, Eilers F et al (2013) Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe. Phys Rev B 87:180505

    Article  Google Scholar 

  18. Yuan RH, Kong WD, Yan L et al (2013) In-plane optical spectroscopy study on FeSe epitaxial thin film grown on SrTiO\(_3\) substrate. Phys Rev B 87:144517

    Article  Google Scholar 

  19. Tanner DB (2015) Use of X-ray scattering functions in Kramers-Kronig analysis of reflectance. Phys Rev B 91:035123

    Article  Google Scholar 

  20. Homes CC, Akrap A, Wen JS et al (2010) Electronic correlations and unusual superconducting response in the optical properties of the iron chalcogenide FeTe\(_{0.55}\)Se\(_{0.45}\). Phys Rev B 81:180508(R)

    Article  Google Scholar 

  21. Nakayama K, Miyata Y, Phan GN et al (2014) Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor. Phys Rev Lett 113:237001

    Article  Google Scholar 

  22. Chubukov AV, Fernandes RM, Schmalian J (2015) Origin of nematic order in FeSe. Phys Rev B 91:201105

    Article  Google Scholar 

  23. Zhang P, Qian T, Richard P et al (2015) Observation of two distinct \(d_{xz}\)/\(d_{yz}\) band splittings in FeSe. Phys Rev B 91:214503

    Article  Google Scholar 

  24. Wen YC, Wang KJ, Chang HH et al (2012) Gap opening and orbital modification of superconducting FeSe above the structural distortion. Phys Rev Lett 108:267002

    Article  Google Scholar 

  25. Hu WZ, Dong J, Li G et al (2008) Origin of the spin density wave instability in AFe\(_2\)As\(_2\) (A = Ba, Sr) as revealed by optical spectroscopy. Phys Rev Lett 101:257005

    Article  Google Scholar 

  26. Hu WZ, Li G, Zheng P et al (2009) Optical study of the spin-density-wave properties of single-crystalline Na\(_{1-\delta }\)FeAs. Phys Rev B 80:100507

    Article  Google Scholar 

  27. Dong T, Chen ZG, Yuan RH et al (2010) Formation of partial energy gap below the structural phase transition and the rare-earth element-substitution effect on infrared phonons in ReFeAsO (Re = La, Nd, and Sm). Phys Rev B 82:054522

    Article  Google Scholar 

  28. Fernandes RM, Chubukov AV, Schmalian J (2014) What drives nematic order in iron-based superconductors? Nat Phys 10:97–104

    Article  Google Scholar 

  29. Mukherjee S, Kreisel A, Hirschfeld PJ et al (2015) Model of electronic structure and superconductivity in orbitally ordered FeSe. Phys Rev Lett 115:026402

    Article  Google Scholar 

  30. Wang F, Kivelson SA, Lee DH (2015) Nematicity and quantum paramagnetism in FeSe. Nat Phys 11:959–963

    Article  Google Scholar 

  31. Luo CW, Cheng PC, Wang SH et al (2016) Unveiling the hidden nematicity and spin subsystem in FeSe. arXiv:1603.08710

  32. Nakajima M, Ishida S, Kihou K et al (2010) Evolution of the optical spectrum with doping in \({\text{Ba(Fe}}_{1-x}{\text{Co}}_x)_2{\text{As}}_2\). Phys Rev B 81:104528

    Article  Google Scholar 

  33. Wu D, Barišić N, Kallina P et al (2010) Optical investigations of the normal and superconducting states reveal two electronic subsystems in iron pnictides. Phys Rev B 81:100512(R)

    Article  Google Scholar 

  34. Tu JJ, Li J, Liu W et al (2010) Optical properties of the iron arsenic superconductor \({\text{BaFe}}_{1.85}{\text{Co}}_{0.15}{\text{As}}_2\). Phys Rev B 82:174509

    Article  Google Scholar 

  35. Terashima T, Kikugawa N, Kiswandhi A et al (2014) Anomalous Fermi surface in FeSe seen by ShubnikovCde Haas oscillation measurements. Phys Rev B 90:144517

    Article  Google Scholar 

  36. Audouard A, Duc F, Drigo L et al (2015) Quantum oscillations and upper critical magnetic field of the iron-based superconductor FeSe. Europhys Lett 109:27003

    Article  Google Scholar 

  37. Lubashevsky Y, Lahoud E, Chashka K et al (2012) Shallow pockets and very strong coupling superconductivity in \({\text{FeSe}}_x{\text{Te}}_{1-x}\). Nat Phys 8:309–312

    Article  Google Scholar 

  38. Wang NL, Hu WZ, Chen ZG et al (2012) High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopy. J Phys Condens Matter 24:294202

    Article  Google Scholar 

  39. Schafgans AA, Moon SJ, Pursley BC et al (2012) Electronic correlations and unconventional spectral weight transfer in the high-temperature pnictide \({\text{BaFe}}_{2-x}{\text{Co}}_x{\text{As}}_2\) superconductor using infrared spectroscopy. Phys Rev Lett 108:147002

    Article  Google Scholar 

  40. Gretarsson H, Lupascu A, Kim J et al (2011) Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using X-ray emission spectroscopy. Phys Rev B 84:100509(R)

    Article  Google Scholar 

  41. Maletz J, Zabolotnyy VB, Evtushinsky DV et al (2014) Unusual band renormalization in the simplest iron-based superconductor \({\text{FeSe}}_{1-x}\). Phys Rev B 89:220506(R)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11120101003, 11327806), and the National Basic Research Program of China (2012CB821403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanlin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ye, Z., Zhang, Y. et al. Band structure reconstruction across nematic order in high quality FeSe single crystal as revealed by optical spectroscopy study. Sci. Bull. 61, 1126–1131 (2016). https://doi.org/10.1007/s11434-016-1102-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1102-2

Keywords

Navigation