Science Bulletin

, Volume 61, Issue 13, pp 1031–1036 | Cite as

Non-Markovian discrete qubit dynamics

  • Jun Sun
  • Yong-Nan Sun
  • Chuan-Feng Li
  • Guang-Can Guo
  • Kimmo Luoma
  • Jyrki Piilo
Article Physics & Astronomy


The study of open quantum systems is important for fundamental issues of quantum physics as well as for technological applications such as quantum information processing. The interaction of a quantum system with its environment is usually detrimental for the quantum properties of the system and leads to decoherence. However, sometimes a quantum control can lead to a coherent partial exchange of information between the system and the dynamics of the open system might become non-Markovian. In this article, we study experimentally discrete non-Markovian open quantum system dynamics. We implement a local control protocol using linear optics for controlling the information flow between the open system and the environment. We show how the transition from Markovian to non-Markovian dynamics can be controlled using only local operations for the open system.


Non-Markovian dynamics Open quantum system Quantum optics Coherent optical effects 



This work was supported by the Magnus Ehrnrooth Foundation and Academy of Finland (287750), National Natural Science Foundation of China (61327901, 11274289 and 11325419), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB01030300). C.F.L. and J.P. acknowledge financial support from the EU Collaborative project QuProCS (Grant Agreement 641277).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Breuer HP, Petruccione F (2007) Theory of open quantum systems. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. 2.
    Alicki R, Lendi K (1987) Lecture notes in physics. In: Quantum dynamical semigroups and applications. Springer, BerlinGoogle Scholar
  3. 3.
    Gorini V, Kossakowski A, Sudarshan ECG (1976) Completely positive dynamical semigroups of \(N\)-level systems. J Math Phys 17:821–825CrossRefGoogle Scholar
  4. 4.
    Lindblad G (1976) On the generators of quantum dynamical semigroups. Comm Math Phys 48:119–130CrossRefGoogle Scholar
  5. 5.
    Gardiner CW, Zoller P (1999) Quantum noise. Springer series in synergetics. Springer, BerlinGoogle Scholar
  6. 6.
    Breuer HP, Laine EM, Piilo J et al (2015) Non-Markovian dynamics in open quantum systems. arXiv:1505.01385
  7. 7.
    Wolf MM, Cirac JI (2008) Dividing quantum channels. Comm Math Phys 279:147–168CrossRefGoogle Scholar
  8. 8.
    Wolf MM, Eisert J, Cubitt TS et al (2008) Assessing non-Markovian quantum dynamics. Phys Rev Lett 101:150402CrossRefGoogle Scholar
  9. 9.
    Breuer HP, Laine EM, Piilo J (2009) Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys Rev Lett 103:210401CrossRefGoogle Scholar
  10. 10.
    Rivas Á, Huelga SF, Plenio MB (2010) Entanglement and non-Markovianity of quantum evolutions. Phys Rev Lett 105:050403CrossRefGoogle Scholar
  11. 11.
    Luo S, Fu S, Song H (2012) Quantifying non-Markovianity via correlations. Phys Rev A 86:044101CrossRefGoogle Scholar
  12. 12.
    Lorenzo S, Plastina F, Paternostro M (2013) Geometrical characterization of non-Markovianity. Phys Rev A 88:020102CrossRefGoogle Scholar
  13. 13.
    Chruściński D, Maniscalco S (2014) Degree of non-Markovianity of quantum evolution. Phys Rev Lett 112:120404CrossRefGoogle Scholar
  14. 14.
    Bylicka B, Chruściński D, Maniscalco S (2014) Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci Rep 4:5720CrossRefGoogle Scholar
  15. 15.
    Pollock FA, Rodríguez-Rosario C, Frauenheim T et al (2015) Complete framework for efficient characterisation of non-Markovian processes. arXiv:1512.00589
  16. 16.
    Liu BH, Li L, Huang YF et al (2011) Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat Phys 7:931–934CrossRefGoogle Scholar
  17. 17.
    Smirne A, Brivio D, Cialdi S et al (2011) Experimental investigation of initial system-environment correlations via trace-distance evolution. Phys Rev A 84:032112CrossRefGoogle Scholar
  18. 18.
    Chiuri A, Greganti C, Mazzola L et al (2012) Linear optics simulation of quantum non-Markovian dynamics. Sci Rep 2:968CrossRefGoogle Scholar
  19. 19.
    Bernardes NK, Cuevas A, Orieux A et al (2015) Experimental observation of weak non-Markovianity. Sci Rep 5:17520CrossRefGoogle Scholar
  20. 20.
    Jirari H, Pötz W (2006) Quantum optimal control theory and dynamic coupling in the spin-boson model. Phys Rev A 74:022306CrossRefGoogle Scholar
  21. 21.
    Rebentrost P, Serban I, Schulte-Herbrüggen T et al (2009) Optimal control of a qubit coupled to a non-Markovian environment. Phys Rev Lett 102:090401CrossRefGoogle Scholar
  22. 22.
    Lapert M, Zhang Y, Braun M et al (2010) Singular extremals for the time-optimal control of dissipative spin \(\frac{1}{2}\) particles. Phys Rev Lett 104:83001CrossRefGoogle Scholar
  23. 23.
    Schmidt R, Negretti A, Ankerhold J et al (2011) Optimal control of open quantum systems: cooperative effects of driving and dissipation. Phys Rev Lett 107:130404CrossRefGoogle Scholar
  24. 24.
    Hwang B, Goan HS (2012) Optimal control for non-Markovian open quantum systems. Phys Rev A 85:032321CrossRefGoogle Scholar
  25. 25.
    Tai JS, Lin KT, Goan HS (2014) Optimal control of quantum gates in an exactly solvable non-Markovian open quantum bit system. Phys Rev A 89:062310CrossRefGoogle Scholar
  26. 26.
    D’Arrigo A, Franco RL, Beneti G et al (2014) Recovering entantlement by local operations. Ann Phys 350:211–224CrossRefGoogle Scholar
  27. 27.
    Orieux A, D’Arrigo A, Ferranti G et al (2015) Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci Rep 5:8575CrossRefGoogle Scholar
  28. 28.
    Dong WB, Wu RB, Yuan XH et al (2015) The modelling of quantum control systems. Sci Bull 60:1493–1508CrossRefGoogle Scholar
  29. 29.
    Jing J, Wu LA (2015) Overview of quantum memory protection and adiabaticity induction by fast signal control. Sci Bull 60:328–335CrossRefGoogle Scholar
  30. 30.
    Jin J, Giovannetti V, Fazio R et al (2015) All-optical non-Markovian stroboscopic quantum simulator. Phys Rev A 91:012122CrossRefGoogle Scholar
  31. 31.
    Viola L, Knill E, Lloyd S (1999) Dynamical decoupling of open quantum systems. Phys Rev Lett 82:2417CrossRefGoogle Scholar
  32. 32.
    Uhrig GS (2007) Keeping a quantum bit alive by optimized \(\pi \)-pulse sequences. Phys Rev Lett 98:100504CrossRefGoogle Scholar
  33. 33.
    Lidar DA (2014) Quantum information and computation for chemistry. Wiley, New YorkGoogle Scholar
  34. 34.
    Lo Franco R, D’Arrigo A, Falci G et al (2014) Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys Rev B 90:054304CrossRefGoogle Scholar
  35. 35.
    Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge University Press, CambridgeGoogle Scholar
  36. 36.
    Luoma K, Piilo J (2015) Discrete dynamics and non-Markovianity. J Phys B. arXiv:1509.04231

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Quantum InformationUniversity of Science and Technology of China, Chinese Academy of SciencesHefeiChina
  2. 2.Synergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Institut für Theoretische PhysikTechnische Universität DresdenDresdenGermany
  4. 4.Department of Physics and Astronomy, Turku Centre for Quantum PhysicsUniversity of TurkuTurun YliopistoFinland

Personalised recommendations