Skip to main content
Log in

Subwavelength grating devices in silicon photonics

  • Review
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

Subwavelength grating (SWG) waveguides in silicon-on-insulator are emerging as an enabling technology for implementing compact, high-performance photonic integrated devices and circuits for signal processing and sensing applications. We provide an overview of our recent work on developing wavelength selective SWG waveguide filters based on Bragg gratings and ring resonators, as well as optical delay lines. These components increase the SWG waveguide component toolbox and can be used to realize more complex photonic integrated circuits with enhanced or new functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lipson M (2009) Silicon photonics: the optical spice rack. Electron Lett 45:575–577

    Article  Google Scholar 

  2. Halir R, Ortega-Moñux A, Schmid JH et al (2014) Recent advances in silicon waveguide devices using sub-wavelength gratings. IEEE J Sel Top Quantum Electron 20:279–291

    Article  Google Scholar 

  3. Halir R, Bock PJ, Cheben P et al (2014) Waveguide sub-wavelength structures: a review of principles and applications. Laser Photon Rev 9:25–49

    Article  Google Scholar 

  4. Halir R, Cheben P, Janz S et al (2009) Waveguide grating coupler with subwavelength microstructures. Opt Lett 34:1408–1410

    Article  Google Scholar 

  5. Halir R, Cheben P, Schmid JH et al (2010) Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure. Opt Lett 35:3243–3245

    Article  Google Scholar 

  6. Bock PJ, Cheben P, Schmid JH et al (2010) Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Opt Express 18:20251–20262

    Article  Google Scholar 

  7. Ortega-Moñux A, Zavargo-Peche L, Maese-Novo A et al (2011) High-performance multimode interference coupler in silicon waveguides with subwavelength structures. IEEE Photonic Technol Lett 23:1406–1408

    Article  Google Scholar 

  8. Bock PJ, Cheben P, Schmid JH et al (2010) Subwavelength grating crossings for silicon wire waveguides. Opt Express 18:16146–16155

    Article  Google Scholar 

  9. Donzella V, Sherwali A, Flueckiger J et al (2014) Sub-wavelength grating components for integrated optics applications on SOI chips. Opt Express 22:21037–21050

    Article  Google Scholar 

  10. Bock PJ, Cheben P, Schmid JH et al (2009) Sub-wavelength grating mode transformers in silicon slab waveguides. Opt Express 17:19120–19133

    Article  Google Scholar 

  11. Velasco AV, Calvo ML, Cheben P et al (2012) Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide. Opt Lett 37:365–367

    Article  Google Scholar 

  12. Wang J, Glesk I, Chen LR (2014) Subwavelength grating filtering devices. Opt Express 22:15335–15345

    Article  Google Scholar 

  13. Wang J, Glesk I, Chen LR (2015) Subwavelength grating Bragg grating filters in silicon-on-insulator. Electron Lett 51:712–713

    Article  Google Scholar 

  14. Wang J, Glesk I, Chen LR (2015) Subwavelength grating filters in SOI. In: 12th International conference on group IV photonics, 2015, pp 86–87

  15. Donzella V, Sherwali A, Flueckiger J et al (2015) Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Opt Express 23:4791–4803

    Article  Google Scholar 

  16. Ashrafi R, Wang J, Glesk I et al (2015) Silicon photonic subwavelength grating based integrated optical delay lines. In: 12th International conference on group IV photonics, 2015, pp 127–128

  17. Rytov SM (1956) Electromagnetic properties of a finely stratified medium. Soviet Phys JETP-USSR 2:466–475

    Google Scholar 

  18. Lalanne P, Hugonin JP (1998) High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms. J Opt Soc Am A Opt Image Sci Vis 15:1843–1851

    Article  Google Scholar 

  19. Kashyap R (1999) Fiber bragg gratings. Academic Press, New York

    Google Scholar 

  20. Strasser TA, Erdogan T, White AE et al (1994) Ultraviolet laser fabrication of strong nearly polarisation-independent Bragg reflectors in germanium-doped silica waveguides on silica subtstrates. Appl Phys Lett 65:3308–3310

    Article  Google Scholar 

  21. Albert J, Bilodeau F, Johnson DC et al (1998) Polarisation-independent strong Bragg gratings in planar lightwave circuits. Electron Lett 34:485–486

    Article  Google Scholar 

  22. Murphy TE, Hastings JT, Smith HI (2001) Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides. J Lightwave Technol 19:1938–1942

    Article  Google Scholar 

  23. Wang X, Shi W, Yun H et al (2012) Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process. Opt Express 20:15547–15558

    Article  Google Scholar 

  24. Kohnke GE, Henry CH, Laskowski EJ et al (1996) Silica based Mach-Zehnder add-drop filter fabricated with UV induced gratings. Electron Lett 32:1579–1580

    Article  Google Scholar 

  25. Hibino Y, Kitagawa T, Hill KO et al (1996) Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-lightwave-circuit-type a symmetric Mach-Zehnder interferometer on Si. IEEE Photonic Technol Lett 8:84–86

    Article  Google Scholar 

  26. Jouanno JM, Zauner D, Kristensen M (1997) Low crosstalk planar optical add-drop multiplexer fabricated with UV-induced Bragg gratings. Electron Lett 33:2120–2121

    Article  Google Scholar 

  27. Burla M, Cortés LR, Li M et al (2013) Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt Express 21:25120–25147

    Article  Google Scholar 

  28. Wang J, Ashrafi R, Rochette M et al (2015) Chirped microwave pulse generation using an integrated SiP Bragg grating in a Sagnac loop. IEEE Photonic Technol Lett 27:1876–1879

    Article  Google Scholar 

  29. Čtyroký J, Kwiecien P, Wang J et al (2015) Simulations of waveguide Bragg grating filters based on subwavelength grating waveguide. Proc SPIE 9516:95160M

    Article  Google Scholar 

  30. Zhang Y, Yang S, Lim AEJ et al (2013) A compact and low loss Y-junction for submicron silicon waveguide. Opt Express 21:1310–1316

    Article  Google Scholar 

  31. Wang Y, Wang X, Flueckiger J et al (2014) Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. Opt Express 22:20652–20662

    Article  Google Scholar 

  32. Xiao SJ, Khan MH, Shen H et al (2007) A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion. Opt Express 15:14765–14771

    Article  Google Scholar 

  33. Xu QF, Schmidt B, Pradhan S et al (2005) Micrometre-scale silicon electro-optic modulator. Nature 435:325–327

    Article  Google Scholar 

  34. Liu FF, Li Q, Zhang ZY et al (2008) Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect. IEEE J Sel Top Quantum Electron 14:706–712

    Article  Google Scholar 

  35. Cardenas J, Foster MA, Sherwood-Droz N et al (2010) Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Opt Express 18:26525–26534

    Article  Google Scholar 

  36. Bogaerts W, De Heyn P, Van Vaerenbergh T et al (2012) Silicon microring resonators. Laser Photon Rev 6:47–73

    Article  Google Scholar 

  37. Willner AE, Zhang B, Zhang L et al (2008) Optical signal processing using tunable delay elements based on slow light. IEEE J Sel Top Quantum Electron 14:691–705

    Article  Google Scholar 

  38. Zou XH, Pan W, Yan LS (2015) All-optical processing to optical and radio frequency (RF) signals. Sci Bull 60:2151–2153

    Article  Google Scholar 

  39. Ng W, Walston AA, Tangonan GL et al (1991) The first demonstration of an optically steered microwave phased array antenna using true-time-delay. J Lightwave Technol 9:1124–1131

    Article  Google Scholar 

  40. Jong-Dug S, Back-Song L, Boo-Gyoun K (2004) Optical true time-delay feeder for X-band phased array antennas composed of 22 optical MEMS switches and fiber delay lines. IEEE Photonic Technol Lett 16:1364–1366

    Article  Google Scholar 

  41. Lee H, Chen T, Li J et al (2012) Ultra-low-loss optical delay line on a silicon chip. Nat Commun 3:867

    Article  Google Scholar 

  42. Glesk I, Bock PJ, Cheben P et al (2011) All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon. Opt Express 19:14031–14039

    Article  Google Scholar 

  43. Poon JKS, Scheuer J, Xu Y et al (2004) Designing coupled-resonator optical waveguide delay lines. J Opt Soc Am B Opt Phys 21:1665–1673

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NSERC NGON and SiEPIC CREATE programs, NSERC SPG, and the Royal Society International Exchanges Scheme 2012/R2. The devices were fabricated by R. Bojko at the University of Washington Nanofabrication Facility, a member of the NSF National Nanotechnology Infrastructure Network. We thank Dr. R. Ashrafi (McGill) for his contributions to the development of the SWG ODLs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence R. Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Glesk, I. & Chen, L.R. Subwavelength grating devices in silicon photonics. Sci. Bull. 61, 879–888 (2016). https://doi.org/10.1007/s11434-016-1077-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1077-z

Keywords

Navigation